.
解 (1)
?z?z?x2cosy ?2xsiny ?y?x?z?z?xylnx ?yxy?1 ?y?x?z1?zx?y? ?x?2 ?xy?xy?z1?z?2y?? ?x1?(x?y2)2?y1?(x?y2)2?z?z??6x2y?4y3 ?4x3?6xy2 ?y?x (2)
(3)
(4)
(5)
?zx2?z12??2xln?x?y??x(6) ?yx?y ?xx?y?zx22x?zx2x2(7)?x?secy?y ?y?secy?(?y2)
?z?z1lnxlnx?y?(lnx?1) ?y?lny?(8)?x ?yx?(9)令y?0,f(x,0)?2lnx,则fx(1,0)?2
(10)令y?1,f(x,1)?x,则fx?(x,1)?1
?2z?2z?7-3设z?x,验证。 ?x?y?y?xy?z2?zy?1?xy?1?yxy?1lnx 解 ?yx ,
?x?y?x?z2?zy?xy?1?yxy?1lnx ?xlnx ,
?y?x?y7-4 求下列函数的二阶偏导数。 (1)z=xln(xy); (2)z?x4?3x2y2?y4;
yy ; (4)z?(1?xy)。 x(3)z?arctan?2zy1?zy===ln(xy)+x=ln(xy)+1解 (1),?x2xyx ?xxy .
.
x?zxx?2z=-=x= ?yy2 xyy,?y22?z32?z?4x?6xy,2?12x2?6y2 (2)?x?x?z (3)??xyy?2z2xy (?)??,?22222222xx?y?x(x?y)?y?1????x?12?z2y?1?z?y(1?xy),2?y3(1?xy)y?2 (4)?x?xx??(0,π),fyy??(0,π). ??(0,π),fxy7-5 设f(x,y)?esinyf,求fxx???esiny,fyy????esiny,fxy???ecosy 解 fx??esiny,fy??ecosy,fxx??(0,π)?0,fxy(0,π)=-1,fyyⅱ(0,π)=0 ⅱ fxx7-6 证明
(1)设z?ln(x?xxxxxy),证明x?z?z1?y?。 ?x?y2(2)设z?yx?z?zarcsin,证明x?y?0。 xy?x?y7-7 计算全增量或全微分。
(1)求函数z?xy在点(2,?1)处,当?x?0.02,?y??0.01时的全增量与全微分; (2)求当x?2,y?1,?x?0.01,?y?0.03时,函数z?22xy的全增量与全微分;
x2?y2(3)求z?x?y在点(0,1)当?x?0.1,?y??0.3时的全微分; (4)求z?ln(xy)在点(2,1)的全微分。
解 (1)全增量?z?f(x0??x,y0??y)?f(x0,y0) 全微分dz?2?z?zdx?dy?2xy2dx?2x2ydy ?x?y (2)全增量?z?f(x0??x,y0??y)?f(x0,y0) 全微分dz??z?zdx?dy ?x?y .
.
(3)全微分dz??z?zdx?dy ?x?y?z?zdx?dy ?x?y (4)全微分dz?7-8 计算全微分。 (1)z?esin(x?y); (2)z?xx2?y2;
(3)z?xy?xy;
(4)u?ln1?x2?y2。 解(1)
?z?z?ex?sin(x?y)?ex?cos(x?y),?ex?cos(x?y) ?x?y (2)
?z??xxx?y22,?z??yyx?y22
(3)
?z1?zx?y?,?x?2 ?xy?yy1?u12x?u12yln(1?x2?y2),??,?? 22222?x21?x?y?y21?x?y (4)u?7-9 求下列多元复合函数的偏导数。 (1)z?ln[e2(x?y)?(x2?y)] , 求
2?z?z和; ?x?y?u?u及; ?x?y(2)设u?(x?y),z?x?y,(x?y?0),求
z22(3)设u??(x?y),求证x22?u?u?y?0; ?y?x(4)设 z?f(x?y,xy),求
222?z?z和; ?x?y(5)设z?uv,u?cosx,v?sinx,求
dz; dx .
.
(6)u?x?4xy?3y,x?t,y?2221du, 求; tdt?z?z和; ?x?y(7)z?uv?uv,u?xcosy,v?xsiny,求
2(8)z?xlny,x?v?z?z,y?3v?2u,求和; u?u?vx(9)z?arctan(xy),y?e,求
?z?z和。 ?x?y解 (1)
?z12(x?y2)?2(x?y2)?[e?2?2x]
2?xe?(x?y) (2)
?u?f?f?f?z??1??0???z(x?y)z?1?(x?y)zln(x?y)?2x ?x?x?y?z?x22 (3)令t?x?y,?u???u????2x,??2y ?x?t?y?t(4)令u=x?y,v?xy
22?z?f?u?f?v?f?f??????2x??y ?x?u?x?v?x?u?vdz?zdu?zdv (5)?????2uv?(?sinx)?u2?cosx
dx?udx?vdx则(6)
du?udx?udy2y2x1?????(1?)?2t?(?3)?(?2) dt?xdt?ydttxyxy(7)
?z?z?u?z?v?????(2uv?v2)?cosy?(u2?2uv)?siny ?x?u?x?v?x?z?z?x?z?yvx2?????2xlny?(?2)??(?2) (8)
?u?x?u?y?uuy (9)
?z11x?y?xe 22?x1?(xy)1?(xy)x27-10对下列函数求y?x。
(1)xy?lny; (2)siny?e?xy?0; (3)xy?lnx?lny?0; (4)x?3y?1。 解 (1)令F(x,y)?xy?lny 则
46?F?F?ex?y2,?cosy?ex?2xy ?x?yx2(2)令F(x,y)?siny?e?xy,
.
.
?F?F1?y,?x? ?x?yy(3)令F(x,y)?xy?lnx?lny
?F1?F1?y?,?x? 则?xx?yy46(4)令F(x,y)?x?3y?1
?F?F?4x3,?18y5 则?x?y 则
7-11 对下列函数求z?y。 x、z?z(1)e?xyz; (2)x?y?z?3xyz?0;
333(3)xy?zlnz; (4)zy?xz?1。
z解 (1)令F(x,y,z)?e?xyz,则Fx???yz,Fy???xz,Fz??e?xy
z23 (2)令F(x,y,z)?x?y?z?3xyz
则Fx??3x?3yz,Fy??3y?3xz,Fz??3z?3xy
222333 (3)令F(x,y,z)?xy?zlnz
则Fx??y,Fy??x,Fz???lnz?1
(4)令F(x,y,z)?zy?xz?1
则Fx???z,Fy??z,Fz??2zy?3xz
322237-12 容积为V的开顶长方水池,求表面积的最小值。 解 设长方形水池的长为x,宽为y,则高为h?V,其表面积为 xy2V??z?y??0x?x2?由?,解得x?y?32V ?zy??x?2V?02y??3V2V3所以,当x?y?2V,h?时,表面积最小。 ?3224V7-13 容积为V的开顶圆柱水池,单位面积造价底部为侧部的3倍,求总造价最小值。
V,假设单位面积造价为1,则总造价 ?r2Vdz2V令 ??2?6?r?0,解得r?33?drrV9V所以,当r?3,h?3,其总造价最小。
3??27-14 求抛物线y?x上的点与直线x?y?2上的点之间的最短距离。
|x?y0?2|2解 点?x0,y0?到直线x?y?2?0的距离公式为d?0,又已知y0?x0
217(x0?)2?2|x?x?2|24,则最短距离为72。 d?00?822解 设圆柱的半径为r,则高为h? .
多元函数微分学习题



