好文档 - 专业文书写作范文服务资料分享网站

物理学相关 量二(2011)答案

天下 分享 时间: 加入收藏 我要投稿 点赞

2011年量子力学二 试题答案(A卷)

一. [证明] 把En和?n分别在En和?n附近按参数?作展开:

(0)(1)(2)??En?En?En?En??(0)(1)(2)???n??n??n??n?(0)(0) ,

???E?, 即 代入能量本征方程Hnnn?k?1??(0)(0)(0)(1)(1)(0)(0)(k)(k?1)(k)(0)(k?s)(s)???? H?En?n?H??En?n???H?En?n?H??n?En?n??En?n??0 k?2?s?1???????得到一系列的k级方程,即

?(0)?E(0))?(1)?(H???E(1))?(0)?0, 当k?1时,一级微扰方程是:(Hnnnn?当k?2时,k级微扰方程是:H它们可以逐级解出?n和En。 对于(1) 式,将?n?上式两边乘以?k(0)*(k)(k)?(0)?E(0)n??(k)n????H(k?1)n?E?(k)n(0)n(k?s)(s)??En?n?0; s?1k?1(1)?am(1)nm(0)(1)(0)(0)(0)???E(1))?(0)?0。 ?m代入得:?anm(Em?En)?m?(Hnnm并积分,利用其正交归一性

(0)*(0)?k??nd???kn得:

(1)(0) ank(Ek(0)?En)???(0)*k??(0)d??E(1)??0 (这里k是任意取的)。 Hnnkn当k?n时,那么上式左边第一项等于0,得到:

(1) En?(0)??(0)??,这就是能量的一级微扰修正公式。 ?H?d??Hnnnn?当k?n时,得到波函数的一级展开系数: a(1)nk???(0)*k???(0)d?Hn(0)En?Ek(0)?Hkn?(0) (k?n)。 En?Ek(0)?Hmn(0)?m。 ?(0)(0)E?Em?nnm(1)(1)对于k?n时由于归一化条件知,ann?0。于是,得到一级微扰的波函数为?n??(0)?E(0)?(2)?H???E(1)?(1)?E(2)?(0)?0 对于(2)式,当k?2时, 二级微扰方程是:Hnnnnnn将?n?(2)?????am(2)nm(0)(1)(1)(0)?m和?n??anm?m代入二级微扰方程得:

m?n??Em(0)m(0)(2)(0)???E(1)?En?m?H?anmn???am?n(1)nm(0)(2)(0)?m?En?n?0,

再在方程两端乘以?k

(0)?并且积分后,得

5

(0)(0)(2) Ek?Enank???m?n(1)(0)*?(0)(1)(1)(2)?a?H?d??aE?E?nm?kmnknn?kn?0 (k是任意选取的)

当k?n时, 上式左方第一项和第三项等于0,剩下的部分为: En(2)?Hnm?Hmn(1)(0)*?(0)(1)????anm?H?d??aH?。 ??nmnmnm(0)(0)?m?nm?nm?nEn?Em?E1(0)???0?可写成H??H??H??,其中H二. [解] H00??0?(0)(0)0E1(0)00??0?????00?及H?(0)??a*E3??00b*a??b?。 0???知,能量零级近似:E1是二重简并的、E3是非简并的。 由H0 (1)、对于E3属于非简并微扰论情况:

(1)?得: 能量一级微扰修正值如下:E3(1)?H33??0。 利用能量一级微扰修正公式En?Hnn(0)再利用能量二级微扰修正公式E(2)n??aE(0)3?HmnE2(0)12(0)mm?n(0)n?E?得

E3(2)??H11,3E(0)32(0)11?E??H12,3E(0)32(0)12?E?bE(0)32(0)1?E?E

所以,E3近似到二级为: E3?E(2)、E1属于二重简并情况:

(0)(0)3|a|2?|b|2。 ?(0)(0)E3?E1在简并子空间中,能量一级修正方程为:

?H????E??1,1?1,2(1)1????C(0)1??0

写成久期方程为

?E1(1)00?E1(1)fn(1)(1)?E12?0,即能量一级修正仍为二重根,简并未消除。 ?0?E11?1能量二级修正方程为:???(0)(0)??1?m?nEn?EmA1?,1??(0)(2)??HH?E??1?,m?m?,1?n???Cn??0,令 ??1?A11,12A12,12?E1(2)?0

fmA11,11?E1(2)1??,写成久期方程为?(0)H1??,3H3,1E1?E3(0)A12,11?E(2)14?A11,11A12,12?A11,12A12,11??(A11,11?A12,12)??1?1?? ?22(A11,11?A12,12)???? 5

?00????00由H??a*b*?a????a, H3,11??a*, H12,3??b, H3,12??b*,其余矩阵元都为零。所以 b?得,H11,30??A11,11?

?H3,11?H11,3E1(0)?E3(0)?H3,12?H12,3E1(0)?E3(0)a?(0)E1?E3(0)b?(0)E1?E3(0)22A11,12?、

?H3,12?H11,3E1(0)?E3(0)?H3,11?H12,3E1(0)?E3(0)ab*?(0)E1?E3(0)?baE1(0)?E3(0)*

A12,12?A12,11??a2ab*?4?A11,11A12,12?A11,12A12,11??(A11,11?A12,12)?1(2)?1?1??得 ??, 代入E1?即A?(0)2(0)2*2(A11,11?A12,12)??E1?E3?abb?????E1(2)??a?bE(0)122(0)(0), E1(2)???0。因此,有E1?E1, E2?E1a?bE(0)322?E(0)3?E(0)1, E3?E3(0)?a?b22(0)E3?E1(0)

(3)、精确解:

?E1(0)???E?得?0由能量本征方程H??a*?E1(0)?E0a*0E1(0)?Eb*abE3(0)?E0E1(0)b*a??C1??C1??????b??C2??E?C2?,相应的久期方程为:

???C?E3(0)??3???C3?22(0)?0?(E1(0)?E)2(E3?E)?(E1(0)?E)(a?b)?0

??(0)?E1?E1?22224(a?b)a?bE1(0)?E3(0)E3(0)?E1(0)??1?(0)?E1(0)?(0) ??E2? (0)2(0)22(E?E)E?E3131??2222(0)(0)(0)(0)4(a?b)a?bE?EE?E?(0)1331E??1??E?(0)33(0)(0)2?22(E3?E1)E3?E1(0)??d??Hij?fi*Hfj??三. [解] 由题意得?的具体形式如下:?11??22?1、?12??21?0,

*???ij??fifjd??d??uH11??fHf1?*1*100?2e??e?rcos?udr?E??H 010012a? 5

?d??uH22??fHf2?*2*2p?2e??e?rcos?udr?E?? H02p28a?(l?1)2?m2l2?m2利用cos?Ylm?Yl?1m?Yl?1m得

(2l?1)(2l?3)(2l?1)(2l?1)?d??u*H??e?rcos?udr?e?u*rcos?udrH12??f1*Hf21s02p2p??1se?4?3r2a?e??rR10R21dr??Ycos?Y10d??redr4?32a003*00????

e?1282e?a?2a????4!???24332a4?3?5?d??u*H??e?rcos?udr?e?u*rcos?udrH21??f2*Hf12p01s1s??2p??3*10??e?1282e?a 4?3r2a?e??rR21R10dr??Ycos?Y00d??redr?4?24332a00根据detHkn??knH?0得久期方程为

E1?H1282e?a24321282e?a243E2?H?0?E1?H????1282e?a?E2?H???0 ???243??2??1282e?a??H??E1?E2?H?E1E2???0 ???243??2?EE???1282e?a121?1?4?????2243E?E?12?????E1?E2??????E1?E2?。

22?Hmin四. [解] 由题意得,初态为i?Rn0(r)Y00,末态为f?Rn?1(r)Y1m。

Pfirfi?xfi?yfi?zfi

22222n?10rn00n?11rn002cr2?n?10xn00?n?10yn00?n?10zn00?3222cr2?n?11xn00?n?11yn00?n?11zn00?32222

n?1?1rn00?n?1?1xn002?n?1?1yn002?n?1?1zn002cr2?3其中c是比例系数,故末态磁量子数m?0,?1的分支概率比为1:1:1。

5

?五. [解] 设本征方程为N????

???]?a???a??1???Na?N???由?a,a????1得[N,a????n?a??n ?nN?Na????n|???a??n|??????n?a?nN?n|?? ?Na?的本征态,但对应的本征值??n。当??0时,由a?n|??都是算符N?|0??0得到从上面可知:a????a?n|0???0。 N?,a????a??1??????a???Na??N另外,由于?N???????n?a??n ??nN?Na???的本征态,对应的本征值为??n。当??0时,???n|??????n?a??n|??是N??n|??,这说明a?Na??a??n|0????n?a??n|0??,故a??n|0???n。 N因此,?取非负整数值,记作???n??0,?1,?2,,??,此时

??n??n?n n?0,1,2, N,?

5

物理学相关 量二(2011)答案

2011年量子力学二试题答案(A卷)一.[证明]把En和?n分别在En和?n附近按参数?作展开:(0)(1)(2)??En?En?En?En??(0)(1)(2)???n??n??n??n?(0)(0),???E?,即代入能量本征方程Hnnn?k?1??(0)(0)(0)(1)(1)(0)(0)(k)(k?1)(k
推荐度:
点击下载文档文档为doc格式
1c3jf9r77k7f1wl0k4bu3bj0w6iihw013l0
领取福利

微信扫码领取福利

微信扫码分享