.
小学数学牛吃草问题知识点总结:
牛吃草问题:牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。
小升初冲刺第2讲
牛吃草问题 基本公式:
1) 设定一头牛一天吃草量为“1”
2)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);
3)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;` 4)吃的天数=原有草量÷(牛头数-草的生长速度); 5)牛头数=原有草量÷吃的天数+草的生长速度。
例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。问:这片牧草可供25头牛吃多少天?
解:假设1头牛1天吃的草的数量是1份 草每天的生长量:(200-150)÷(20-10)=5份
10×20=200份……原草量+20天的生长量 原草量:200-20×5=100 或150-10×5=100份
15×10=150份……原草量+10天的生长量 100÷(25-5)=5天 [自主训练] 牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天? 解:假设1头牛1天吃的草的数量是1份 草每天的生长量:(180-150)÷(20-10)=3份
9×20=180份……原草量+20天的生长量 原草量:180-20×3=120份 或150-10×3=120份
15×10=150份……原草量+10天的生长量 120÷(18-3)=8天
例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。已知某块
.
.
草地上的草可供20头牛吃5天,或可供15头牛吃6天。照此计算,可供多少头牛吃10天?
解:假设1头牛1天吃的草的数量是1份 草每天的减少量:(100-90)÷(6-5)=10份
20×5=100份……原草量-5天的减少量 原草量:100+5×10=150 或90+6×10=150份
15×6=90份……原草量-6天的减少量 (150-10×10)÷10=5头 [自主训练] 由于天气逐渐寒冷,牧场上的牧草每天以均匀的速度减少,经测算,牧场上的草可供30头牛吃8天,可供25头牛吃9天,那么可供21头牛吃几天?
解:假设1头牛1天吃的草的数量是1份 草每天的减少量:(240-225)÷(9-8)=15份
30×8=240份……原草量-8天的减少量 原草量:240+8×15=360份或220+9×15=360份
25×9=225份……原草量-9天的减少量 360÷(21+15)=10天
例3、自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。已知男孩每
分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上。问:该扶梯共有多少级?
男孩:20×5 =100(级) 自动扶梯的级数-5分钟减少的级数 女孩;15×6=90(级) 自动扶梯的级数-6分钟减少的级数 每分钟减少的级数= (20×5-15×6) ÷(6-5)=10(级) 自动扶梯的级数= 20×5+5×10=150(级)
[自主训练] 两个顽皮孩子逆着自动扶梯行驶的方向行走,男孩每秒可走3级阶梯,女孩每秒可走2级阶梯,结果从扶梯的一端到达另一端男孩走了100秒,女孩走了300秒。问该扶梯共有多少级? 3×100=300自动扶梯级数+100秒新增的级数 2×300=600自动扶梯级数+300秒新增的级数
每秒新增的级数:(2×300-3×100)÷(300-100)=1.5(级)
.
.
自动扶梯级数= 3×100-100×1.5=150(级)
1. 有一片牧场,操每天都在匀速生长(每天的增长量相等),如果放牧24头牛,则6天吃完草,如果放牧21头牛,则8天吃完草,设每头牛每天的吃草量相等,问:要使草永远吃不完,最多只能放牧几头牛? 假设1头1天吃1个单位 24*6=144 21*8=168 168-144=24
每天长的草可供24/2=12头牛吃 最多只能放12头牛
2,有一片草地,草每天生长的速度相同。这片草地可供5头牛吃40天,或6供头牛吃30天。如果4头牛吃了30天后,又增加2头牛一起吃,这片草地还可以再吃几天?
假设1头1天吃1个单位 5*40=200;6*30=180 200-180=20
每天长的草:20/(40-30)=2 原有草:200-2*40=120
4*30=120 ,30*2=60 60/4=15天
3,假设地球上新增长资源的增长速度是一定的,照此推算,地球上的资源可供110亿人生活90年,或可供90亿人生活210年,为了人类不断繁衍,那么地球最多可以养活多少亿人? 假设1亿人头1天吃1个单位 110*90=9900;90*210=18900 18900-9900=9000 9000/(210-90)=75
4,一游乐场在开门前有100人排队等候,开门后每分钟来的游客是相同的,一个入口处每分钟可以放入10名游客,如果开放2个入口处20分钟就没人排队,现开放4个入口处,那么开门后多少分钟后没人排队? 2*20*10=400 400-100=300 300/20=15 100+15*4=160 160/(4*10)=4
(1)因为草量=原有草量+新长出的草量,而且草量是均匀增长的。 所以“对应的牛头数×吃的较多天数”就代表了第一次情况下的总草量, 即为:吃的较多天数时的总草量=草地原有草量+草的生长速度*较多天数时的时间。
.
.
同理“相应的牛头数×吃的较少天数”代表了第二次情况下的总草量,即为:吃的较少天数时的总草量=草地原有草量+草的生长速度*较少天数时的时间。 两个一做差,式子中的“原有草量”就被减掉了,等号的左边就是两次情况之下总草量的差,右边等于草的生长速度*两次情况下的时间差,所以直接把时间差除到左边去,就得到了草的生长速度了。
(2)牛吃的草的总量包括两个方面,一是原来草地上的草,而是新增长出来的草。所以“牛头数×吃的天数”表示的就是牛一共吃了多少草,牛在这段时间把草吃干净了,所以牛一共吃了多少草就也表示草的总量。当然草的总量减去新增长出来的草的数量,就剩下原来草地上面草的数量了。
牛吃草问题概念及公式
牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。解决牛吃草问题常用到四个基本公式,分别是︰
1) 设定一头牛一天吃草量为“1”
1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);
2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`
3)吃的天数=原有草量÷(牛头数-草的生长速度); 4)牛头数=原有草量÷吃的天数+草的生长速度。 这四个公式是解决消长问题的基础。
由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。正是由于这个不变量,才能够导出上面的四个基本公式。
牛吃草问题经常给出不同头数的牛吃同一片次的草,这块地既有原有的草,又有每天新长出的草。由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。
解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。 这类问题的基本数量关系是:
1.(牛的头数×吃草较多的天数-牛头数×吃草较少的天数)÷(吃的较多的天数-吃的较少的天数)=草地每天新长草的量。
2.牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草。 解多块草地的方法
.
.
多块草地的“牛吃草”问题,一般情况下找多块草地的最小公倍数,这样可以减少运算难度,但如果数据较大时,我们一般把面积统一为“1”相对简单些。
“牛吃草”问题分析
华图公务员考试研究中心数量关系资料分析教研室研究员 姚璐
【华图名师姚璐例1】有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供25头牛吃多少天?
A.3 B.4 C.5 D.6
【华图名师姚璐答案】C
【华图名师姚璐解析】设该牧场每天长草量恰可供X头牛吃一天,这片草场可供25头牛吃Y天
根据核心公式 代入
(200-150)/(20-10)=5 10*20-5*20=100 100/(25-5)=5(天)
璐例2】有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供多少头牛吃4天?
A.20 B.25 C.30 D.35 【华图名师姚璐答案】C
【华图名师姚璐解析】设该牧场每天长草量恰可供X头牛吃一天, 根据核心公式代入
(20×10-15×10)=5 10×20-5×20=100 100÷4+5=30(头)
【华图名师姚璐例3】如果22头牛吃33公亩牧场的草,54天后可以吃尽,17头牛吃28公亩牧场的草,84天可以吃尽,那么要在24天内吃尽40公亩牧场的草,需要多少头牛? 1
A.50 B.46 C.38 D.35 【华图名师姚璐答案】D
【华图名师姚璐解析】 设每公亩牧场每天新长出来的草可供X头牛吃天,每公亩草场原有牧草量为Y ,
24天内吃尽40公亩牧场的草,需要Z头牛 根据核心公式: ,代入
,因此 ,选择D
【华图名师姚璐注释】这里面牧场的面积发生变化,所以每天长出的草量不再是常量。
下面我们来看一下上述“牛吃草问题”解题方法,在真题中的应用。 【华图名师姚璐例4】有一个灌溉用的中转水池,一直开着进水管往里灌水,一段时间后,用2台抽水机排水,则用40分钟能排完;如果用4台同样的抽水机排水,则用16分钟排完。问如果计划用10分钟将水排完,需要多少台抽水机?【广东2006上】
.