平面直角坐标系教案(1)
【教学目标】
1、认识平面直角坐标系,了解点与坐标的对应关系;
2、在给定的直角坐标系中,能由点的位置写出点的坐标(坐标都为整数); 3、渗透数形结合的思想;
4、通过介绍数学家的故事,渗透理想和情感的教育. 【重点难点】
重点:认识平面直角坐标系。 难点:根据点的位置写出点的坐标。 【教学准备】
教师:收集有关法国数学家笛卡儿的有关资料(也可以将有关的直角坐标系制作成课件)。 【教学过程】 一、情境导入
1、在一条笔直的街道边,竖着一排等距离的路灯,小华、小红、小明的位置如图1所示,你能根据图示确切地描述他们三个人的位置关系吗?
在学生进行叙述后,教师可以抓住以什么为“基准”,并借助于数轴来处理这个问题,从而进入课题.
设计意图:学生可以以其中的一人为基准进行描述,其目的是为数轴上的点的坐标的确定做准备。
2、如果我们画一条数轴,取小红的位置为原点,取向右的方向为正方向,取两盏路灯间的距离为一个单位长度,那么小华的位置(A)就可以用-3来表示,小明的位置(B)就可以用6来表示(如图2).此时,我们说点A在数轴上的坐标是-3,点B在数轴上的坐标是6.这样数轴上的点的位置与坐标之间就建立了对应关系.
1 / 4数学备课大师 今日用大师 明日做大师!
设计意图:将数轴上点的坐标的概念学习置于具体的问题情境中。
问题:(1)在上述情境中,如果小兵位于小明左侧的第二盏路灯处,你能说出小兵在数轴上对应的点的坐标吗?
(2)如果小兵站在一个长方形的操场上,你用什么方法可以确定小兵的位置?
(3)如果小兵站在一个大操场上,你用什么方法可以确定小兵的位置?
设计意图:三个问题的安排有一定的层次性,为下一步引出平面直角坐标系作铺垫。 二、探究新知
1、平面直角坐标系的引入
对于上述第(2)个问题,我们可以用图3来表示: 这时,小兵(P)的位置就可以用两个数来表示.如点P离AB边1 cm,离AD边1. 5 cm,如果1 cm代表20 m,那么小兵离AB边20 m,离AD边30 m.
对于上述第(3)个问题,我们是否也可以借助
于这样的一些线来确定小兵的位置呢?我们在小兵所在的平面内画上一些方格线(如图4),利用上节课所学的知识,就可以解决这个问题了.
(然后由学生回答这个问题的解决过程)
受上述方法的启发,为了确定平面内点的位置,我们可以画一些纵横交错的直线,便于标记每一条直线的顺序,我们又可以以其中的两条为基准(如图5).
2 / 4数学备课大师 今日用大师 明日做大师!
最早采用这种方法的是法国数学家笛卡儿,然后向学生简要介绍笛卡儿的有关故事. 2、平面直角坐标系的概念
教师边在黑板上画图(见教材第47页图6.1-4),边介绍平面直角坐标系、x轴(或横轴),y轴(或纵轴)、原点等的概念.
注意:在一般情况下,两条坐标轴所取的单位长度是一致的. 3、点的坐标,
有了平面直角坐标系,平面内的点就可以用一个有序数对来表示了.如下图,由点A分别向x轴和y轴作垂线,垂足M在x上的坐标是3,垂足N在y轴上的坐标是4,有序数对(3,4)就叫做点A的坐标,其中3是横坐标,4是纵坐标.
注意:表示点的坐标时,必须横坐标在前,纵坐标在后,中间用逗号隔开。 尝试:请在图6中写出点B、C、D的坐标。
设计说明:这一步是教学中的难点,教师一方面应强调点的坐标的书写规范,另一方面也必须安排一定的练习时间。 1、坐标轴上点的坐标
问题:(1)在图7的平面直角坐标系中,你能分别说出点A,B,C,D的坐标是什么吗? (2)从上面的练习中你有什么发现?原点O的坐标是什么?x轴和y轴上的点的坐标有什么特点?
在这里教师必须再次强调点的横坐标写在前面,纵坐标写在后面的坐标写法。 设计意图:先学一般点的坐标,再来探究特殊点的坐标,这样安排符合学生的学习规律,也更容易使学生理解和掌握。 三、总结归纳
1、平面直角坐标系的作用;
3 / 4数学备课大师 今日用大师 明日做大师!