好文档 - 专业文书写作范文服务资料分享网站

BP神经网络地设计实例(MATLAB编程)

天下 分享 时间: 加入收藏 我要投稿 点赞

实用文案

神经网络的设计实例(MATLAB编程) 例1 采用动量梯度下降算法训练 BP 网络。 训练样本定义如下: 输入矢量为 p =[-1 -2 3 1 -1 1 5 -3]

目标矢量为 t = [-1 -1 1 1] 解:本例的 MATLAB 程序如下:

close all clear echo on clc

% NEWFF——生成一个新的前向神经网络 % TRAIN——对 BP 神经网络进行训练 % SIM——对 BP 神经网络进行仿真 pause

% 敲任意键开始 clc

% 定义训练样本

P=[-1, -2, 3, 1; -1, 1, 5, -3]; % P 为输入矢量 T=[-1, -1, 1, 1]; % T 为目标矢量

标准文档

实用文案

pause; clc

% 创建一个新的前向神经网络

net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm') % 当前输入层权值和阈值 inputWeights=net.IW{1,1} inputbias=net.b{1} % 当前网络层权值和阈值 layerWeights=net.LW{2,1} layerbias=net.b{2} pause clc

% 设置训练参数

net.trainParam.show = 50; net.trainParam.lr = 0.05; net.trainParam.mc = 0.9; net.trainParam.epochs = 1000; net.trainParam.goal = 1e-3; pause clc

% 调用 TRAINGDM 算法训练 BP 网络 [net,tr]=train(net,P,T);

标准文档

实用文案

pause clc

% 对 BP 网络进行仿真 A = sim(net,P) % 计算仿真误差 E = T - A MSE=mse(E) pause clc echo off

例2 采用贝叶斯正则化算法提高 BP 网络的推广能力。在本例中,我们采用两种训练方法,即 L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练 BP 网络,使其能够拟合某一附加有白噪声的正弦样本数据。其中,样本数据可以采用如下MATLAB 语句生成:

输入矢量:P = [-1:0.05:1]; 目标矢量:randn(seed,78341223); T = sin(2*pi*P)+0.1*randn(size(P)); 解:本例的 MATLAB 程序如下:

close all clear

标准文档

实用文案

echo on clc

% NEWFF——生成一个新的前向神经网络 % TRAIN——对 BP 神经网络进行训练 % SIM——对 BP 神经网络进行仿真 pause

% 敲任意键开始 clc

% 定义训练样本矢量 % P 为输入矢量 P = [-1:0.05:1]; % T 为目标矢量

randn('seed',78341223); T = sin(2*pi*P)+0.1*randn(size(P)); % 绘制样本数据点 plot(P,T,'+'); echo off hold on;

plot(P,sin(2*pi*P),':'); % 绘制不含噪声的正弦曲线 echo on clc pause

标准文档

实用文案

clc

% 创建一个新的前向神经网络

net=newff(minmax(P),[20,1],{'tansig','purelin'}); pause clc echo off clc

disp('1. L-M 优化算法 TRAINLM'); disp('2. 贝叶斯正则化算法 TRAINBR'); choice=input('请选择训练算法(1,2):'); figure(gcf); if(choice==1) echo on clc

% 采用 L-M 优化算法 TRAINLM net.trainFcn='trainlm'; pause clc

% 设置训练参数

net.trainParam.epochs = 500; net.trainParam.goal = 1e-6; net=init(net); % 重新初始化

标准文档

BP神经网络地设计实例(MATLAB编程)

实用文案神经网络的设计实例(MATLAB编程)例1采用动量梯度下降算法训练BP网络。训练样本定义如下:输入矢量为p=[-1-231-115-3]目标矢量为t=[-1-111]解:本例的MATLAB程序如下:closeallclearechoonclc
推荐度:
点击下载文档文档为doc格式
1auna0y5sy37lyd0yjbf83hrt8bf8q008rb
领取福利

微信扫码领取福利

微信扫码分享