好文档 - 专业文书写作范文服务资料分享网站

高中数学必修2知识点总结归纳

天下 分享 时间: 加入收藏 我要投稿 点赞

高中数学必修2知识点

一、直线与方程 (1)直线的倾斜角

定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

(2)直线的斜率

①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即k?tan?。斜率反映直线与轴的倾斜程度。 当???0?,90??时,k?0; 当???90?,180存在。

②过两点的直线的斜率公式:k?y2?y1x2?x1??时,k?0; 当??90?时,k不

(x1?x2)

注意下面四点:(1)当x1?x2时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 (3)直线方程

①点斜式:y?y1?k(x?x1)直线斜率k,且过点?x1,y1?

注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表

示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。 ②斜截式:y?kx?b,直线斜率为k,直线在y轴上的截距为b ③两点式:④截矩式:

y?y1y2?y1xa?yb?x?x1x2?x1(x1?x2,y1?y2)直线两点?x1,y1?,?x2,y2?

?1

其中直线l与x轴交于点(a,0),与y轴交于点(0,b),即l与x轴、y轴的截距分别为a,b。

⑤一般式:Ax?By?C?0(A,B不全为0)

1各式的适用范围 ○2特殊的方程如: 注意:○

平行于x轴的直线:y?b(b为常数); 平行于y轴的直线:x?a(a为常数);

(5)直线系方程:即具有某一共同性质的直线 (一)平行直线系

平行于已知直线A0x?B0y?C0?0(A0,B0是不全为0的常数)的直线系:A0x?B0y?C?0(C为常数) (二)过定点的直线系

(ⅰ)斜率为k的直线系:y?y0?k?x?x0?,直线过定点?x0,y0?;

(ⅱ)过两条直线l1:A1x?B1y?C1?0,l2:A2x?B2y?C2?0的交点的直线系方程为

,其中直线l2不在直线系中。 ?A1x?B1y?C1????A2x?B2y?C2??0(?为参数)

(6)两直线平行与垂直

当l1:y?k1x?b1,l2:y?k2x?b2时,

l1//l2?k1?k2,b1?b2;l1?l2?k1k2??1

注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。 (7)两条直线的交点

l1:A1x?B1y?C1?0 l2:A2x?B2y?C2?0相交

A1x?B1y?C1交点坐标即方程组???0的一组解。

?A2x?B2y?C2?0方程组无解?l1//l2 ; 方程组有无数解?l1与l2重合 (8)两点间距离公式:设A(x1,y1),B是平面直角坐标系中的两个点, (x2,y2)则|AB|?Ax0?By0?CA?B22(x2?x1)?(y2?y1)22

(9)点到直线距离公式:一点P?x0,y0?到直线l1:Ax?By?C?0的距离

d?

(10)两平行直线距离公式

在任一直线上任取一点,再转化为点到直线的距离进行求解。 二、圆的方程

1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,

定长为圆的半径。

2、圆的方程

22(1)标准方程?x?a???y?b??r2,圆心?a,b?,半径为r; (2)一般方程x2?y2?Dx?Ey?F?0

当D2?E2?4F?0时,方程表示圆,此时圆心为

r?122E??D,????2??2,半径为

D2?E22?4F

22当D?E?4F?0时,表示一个点; 当D?E?4F?0时,方程不表示

任何图形。

(3)求圆方程的方法:

一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

3、直线与圆的位置关系: 直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断: (1)设直线l:Ax?By?C?0,圆C:?x?a?2??y?b?2?r2,圆心C?a,b?到l的距离为

d?Aa?Bb?CA?B22,则有d?r?l与C相离;d?r?l与C相切;

d?r?l与C相交

(2)设直线l:Ax?By?C?0,圆C:?x?a?2??y?b?2?r2,先将方程联立消元,得到一个一元二次方程之后,令其中的判别式为?,则有 ??0?l与C相离;??0?l与C相切;??0?l与C相交

注:如果圆心的位置在原点,可使用公式xx0?yy0?r2去解直线与圆相切的问题,其中?x0,y0?表示切点坐标,r表示半径。 (3)过圆上一点的切线方程:

①圆x2+y2=r2,圆上一点为(x0,y0),则过此点的切线方程为xx0?yy0?r2 (课本命题).

②圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2 (课本命题的推广). 4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

设圆C1:?x?a1?2??y?b1?2?r2,C2:?x?a2?2??y?b2?2?R2 两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

当d?R?r时两圆外离,此时有公切线四条;

当d?R?r时两圆外切,连心线过切点,有外公切线两条,内公切线一条; 当R?r?d?R?r时两圆相交,连心线垂直平分公共弦,有两条外公切线; 当d?R?r时,两圆内切,连心线经过切点,只有一条公切线; 当d?R?r时,两圆内含; 当d?0时,为同心圆。 三、立体几何初步

1、柱、锥、台、球的结构特征

(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四

边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。 表示:用各顶点字母,如五棱柱ABCDE?A'B'C'D'E'或用对角线的端点字母,如五棱柱AD'

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;

侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥P?A'B'C'D'E'

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比

等于顶点到截面距离与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的

部分

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台P?A'B'C'D'E' 几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点

(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④

侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所

围成的几何体

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的

部分

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几

何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 2、空间几何体的三视图

定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、

俯视图(从上向下)

注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

3、空间几何体的直观图——斜二测画法

斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;

②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

4、柱体、锥体、台体的表面积与体积

(1)几何体的表面积为几何体各个面的面积的和。

(2)特殊几何体表面积公式(c为底面周长,h为高,h为斜高,l为母线)

S直棱柱侧面积S圆锥侧面积S正棱台侧面积?'

?ch S圆柱侧?2?rh S正棱锥侧面积??rl

12(c1?c2)h'

?12ch'

S圆台侧面积?(r?R)?l

S圆柱表?2?r?r?l? S圆锥表??r?r?l? S圆台表???r2?rl?Rl?R2?

(3)柱体、锥体、台体的体积公式

??V柱?Sh V圆柱?ShV台?13(S?'2r h V锥?1Sh V圆锥?1?r2h

33SS?S)h'''22 V圆台?(S?SS?S)h??(r?rR?R)h

1133

(4)球体的表面积和体积公式:V球=4?R ; S球面=4?R2

3

34、空间点、直线、平面的位置关系 (1)平面

① 平面的概念: A.描述性说明; B.平面是无限伸展的;

② 平面的表示:通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);

也可以用两个相对顶点的字母来表示,如平面BC。 ③ 点与平面的关系:点A在平面?内,记作A??;点A不在平面?内,记作A?? 点与直线的关系:点A的直线l上,记作:A∈l; 点A在直线l外,记作A?l;

直线与平面的关系:直线l在平面α内,记作l?α;直线l不在平面α内,记作l?α。

(2)公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

(即直线在平面内,或者平面经过直线)

应用:检验桌面是否平; 判断直线是否在平面内 用符号语言表示公理1:A?l,B?l,A??,B???l??

(3)公理2:经过不在同一条直线上的三点,有且只有一个平面。

推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行

直线确定一平面。

公理2及其推论作用:①它是空间内确定平面的依据 ②它是证明平面重合的依据

(4)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

符号:平面α和β相交,交线是a,记作α∩β=a。 符号语言:P?A?B?A?B?l,P?l 公理3的作用:

①它是判定两个平面相交的方法。

②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。 ③它可以判断点在直线上,即证若干个点共线的重要依据。 (5)公理4:平行于同一条直线的两条直线互相平行 (6)空间直线与直线之间的位置关系

高中数学必修2知识点总结归纳

高中数学必修2知识点一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表
推荐度:
点击下载文档文档为doc格式
1ajif9sirp7yogl1iu4d
领取福利

微信扫码领取福利

微信扫码分享