2018年第35届全国中学生物理竞赛复赛理论考试试
题
2018年9月22日
一,(40分)假设地球是一个质量分布各向同性的球体。从地球上空离地面高度为 对于地h的空间站发射一个小物体,该物体相 球以某一初速度运动,初速度方向与其到地心的连线垂直。已知地球半径为 转及地球大气R,质量为M,引力常量为G。地球自 的影响可忽略。
(1 )若该物体能绕地球做周期运动,其初速度的大小应满足什么条件
(2)若该物体的初速度大小为 v0,且能落到地面,求其落地时速度的大小和方向(即速度,以与其水平分量之间的夹角)
及它从开始发射直至落地所需的时间。
2
已知对于c :::0,厶=b —4ac 有
0
3
『 xdx
Ja +bx +cx2
arcs in b . 2cx b 2(-c)
C
式中C为积分常数。
2
a bx cx2
c
二, (40分)如图,一劲度系数为 k的轻弹簧左端固定,右端连一质量为 球m的小球,弹簧水平水平,它处于自然状态时小 位于坐标原点 O;小球课在水平地面上滑动,它与地面之间的摩擦因数为 ?1。初始时小球速度为0,将此时弹簧相对于 其原长的伸长记为-A0
(A0>0但是它并不是已知量)。重力加速度大小为
g,假设最大静摩擦力等于滑动摩擦力
(1)如果小球至多只能向右运动,求小球最终静止的位置,和此种情形下 A0应满足的条件; (2)如果小球完成第一次向右运动至原点右边后,至多只能向左运动,求小球最终静止的
位置,和此种情形下
A0应满 足的条件;
(3) 如果小球只能完成 n次往返运动(向右经过原点,然后向左经过原点,算
1次
往返)
(4) 如果小球只能完成 n次往返运动,求小球从开始运动直至最终静止的过程中运动的总路程。
三、(40分)如图,一质量为 M、长为I的匀质细杆AB自由悬挂于通过坐标原点 O点的水平光滑转轴上(此时,杆的
上端A未在图中标出,可视为与 O点重合),杆可绕通过O点的轴在竖直平面(即 x-y平面,x轴正方向水平向右)内 转动;O点相对于地面足够高,初始时杆自然下垂;一质量为 m的弹丸以大小为vo的水平速度撞击杆的打击中心(打击 过程中轴对杆的水平作用力为零)并很快嵌入杆中。在杆转半圈至竖直状态时立即撤除转轴。重力加速度大小为 g。
(1) 求杆的打击中心到 O点的距离;
(2) 求撤除转轴前,杆被撞击后转过 二(0 ::: ^ :::二)角时转轴对杆的作用力 (3) 以撤除转轴的瞬间为计时零点,求撤除转轴后直至杆着地前,杆端 B的位置随
时间t变化的表达式
XB(t)和
yB(t);
(4) 求在撤除转轴后,杆再转半圈时 O、B两点的高度差。
四、(40分)Ioffe-Pritchard 磁阱可用来束缚原子的运动,其主要部分如图所示。四根均通
有恒定电流
I的长直导线1、
2、3、4都垂直于x-y平面,它们与x-y平面的交点是边长为 2a、中心在原点0的正方形的顶点,导线 1、2所在平
面与x轴平行,各导线中电流方向已在图中标岀。整个装置置于匀强磁场
B0
( k为
z轴正方向单位矢量)中。 已知真空磁导率为 %
。
(2) 电流在原点附近产生的总磁场的近似表达式,保留至线性项;
(3) 将某原子放入磁阱中,该原子在磁阱中所受磁作用的束缚势能正比于其所在位置的总磁感应强度
Btot的大小,即磁 作用束缚势能V = -I Btot 用力;
,丄 为正的常量。求该原子在原点
O附近所受磁场的作
(4) 在磁阱中运动的原子最容易从 x-y平面上什么位置逸出求刚好能够逸出磁阱的原子的动能
a4
t
t
A- ■■ aO
一 -口-
2?-二 X 0
---------- 五、 (40分)塞曼发现了钠光 D线在磁场中分裂成三条,洛仑兹根据经典电磁理论对此做出了解释,他们因此荣获 年诺贝尔物理学奖。假定原子中的价电子(质量为
m,电荷量为?e,e 0 )受到一指向原子中心的等效线性回复力
70的简谐振动,发出圆频率为?0的光。现将该原子
-m .^r (r为价电子相对于原子中心的位矢)作用,做固有圆频率为 置于沿z轴正方向的匀强磁场中,磁感应强度大小为
(1 )选一绕磁场方向匀角速转动的参考系,使价电子在该参考系中做简谐振动,导出该电子运动的动力学方程在直角坐 标系中的分量形式并求岀其解
(2) 将(1)问中解在直角坐标系中的分量形式变换至实验室参考系的直角坐标系;
(3) 证明在实验室参考系中原子发出的圆频率为 ?0的谱线在磁场中一分为三;并对弱磁场(即 ;讥口 p)情形,求出三 条谱线的频率间隔。
已知:在转动角速度为 「的转动参考系中,运动电子受到的惯性力除惯性离心力外还受到科里奥利力作用,当电子相对于 转动参考系运动速度为 v?时,作用于电子的科里奥利力为
六、 (40分)如图,太空中有一由同心的内球和球壳构成的实验装置,
m,温度保持恒定,比辐射率为e =0.800 ;球壳的导热系数为■. =1.00 10』J
=0.900m、 R2= 1.00 m,外表面可视为黑体;该实验装置已处于热稳定状态,此时球壳内表面比辐射率为 斯特藩常量为S =5.67 10 ^W
壳外表面的热量为 Q =44.0W,求(1 )球壳外表面温度
球温度To。
已知:物体表面单位面积上的辐射功率与同温度下的黑体在该表面单位面积上的辐射功率之比称为比辐射率。当辐射照射 到物体表面时,物体表面单位面积吸收的辐射功率与照射到物体单位面积上的辐射功率之比称为吸收比。 物体的吸收比恒等于该物体在同温度下的比辐射率。
当物体内某处在
rIT
物体内该处单位时间在 z方向每单位面积流过的热量为 -K^—,此即傅里叶热传导定律
七、(40分)用波长为 垂633 nm的激光水平照射竖直圆珠笔中的小弹簧,在距离弹簧 4.2 m的光屏(与激光水平照射方向 直)上形成衍射图像, 分相似。
利用图a右图中给岀的尺寸信息, 通过测量估算弹簧钢丝的直径 d1、弹簧圈的半径 R和弹簧的螺距 p;图b
是用波长 为0.15 nm的平行X射线照射DNA分子样品后,在距离样品9.0 cm的照相底片上拍摄的。假设DNA分子与底片平行, 且均与X射线照射方向垂直。根据图 b中给出的尺寸信息,试估算 DNA螺旋结构的半径 R '和螺距p o 说明:由光学原理可知,弹簧上两段互成角度的细铁丝的衍射、干涉图像与两条成同样角度、相同宽度的狭缝的衍射、干 涉图像一致。 八、(40分)1958年穆斯堡尔发现的原子核无反冲共振吸收效应
(即穆斯堡尔效应) 可用于测量光子频率极微小的变化,
如图 a所示。其右图与1952年拍摄的首张DNA分子双螺旋结构 X射线衍射图像(图 b)十
穆斯堡尔因此荣获 1961年诺贝尔物理学奖。类似于原子的能级结构,原子核也具有分立的能级,并能通过吸收或放出光 子在能级间跃迁。原子核在吸收和放出光子时会有反冲,部分能量转化为原子核的动能(即反冲能) 发态相对于其基态的能量差并不是一个确定值,而是在以
34
发态到基态的跃迁, E0 =2.31 1045 J ,卜=3.2 1043E0。已知质量
----- 也3
1902
------ B (为方便起见,将 B参数化为L )
e
fc - -2m.。
内球和球壳内表面之间为真空。 内球半径为r = 0.200
KJ ,内、外半径分别为 Ri
E= 0.800。
K ,宇宙微波背景辐射温度为
T2 ;
T =2.73K。若单位时间内由球壳内表面传递到球
( 2 )球壳内表面温度 T1 ; ( 3)内
在热平衡状态下,
dT
z方向(热流方向)每单位距离温度的增量为
dz
时,
dz
。此外,原子核的激
E0为中心、宽度为2-的范围内取值的。对于 57Fe从第一激
=9.5 10‘6kg ,普朗克常量
h =6.6 10 _ J s,真空中的光速 c=3.0x 108m/ s。
(1 )忽略激发态的能级宽度,求反冲能,以及在考虑核反冲和不考虑核反冲的情形下, 出的光子的频率之差;
(2) 忽略激发态的能级宽度,求反冲能,以及在考虑核反冲和不考虑核反冲的情形下, 的频率之差;
(3) 考虑激发态的能级宽度,处于第一激发态的静止原子核
57
5757
Fe从第一激发态跃迁到基态发
Fe从基态跃迁到激发态吸收的 光子
Fe*跃迁到基态时发岀的光子能否被另一个静止的基态原 子核57
Fe吸收而跃迁到第一激发态 57 Fe* (如发生则称为共振吸收)并说明理由。
(4) 现将57Fe原子核置于晶体中,该原子核在跃迁过程中不发生反冲。现有两块这样的晶体,其中一块静止晶体中处于
第一激发态的原子核57 Fe*发射光子,另一块以速度V运动的晶体中处于基态的原子核 57Fe吸收光子。当速度V的大小 处于什么范围时,会发生共振吸收如果由于某种原因,到达吸收晶体处的光子频率发生了微小变化,化(给出原理和相 关计算)
其相对变化为10-10,试设想如何测量这个变