15.在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有( ) (A)1个 (B)2个 (C)3个 (D)4个
16.一次函数y=ax+b(a为整数)的图象过点(98,19),交x轴于(p,0),交y轴于(?0,q),若p为质数,q为正
整数,那么满足条件的一次函数的个数为( ) (A)0 (B)1 (C)2 (D)无数
17.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数.当直线y=x-3与y=kx+k的交点为整点时,k的值
能够取( )
(A)2个 (B)4个 (C)6个 (D)8个
18.(2005年全国初中数学联赛初赛试题)在直角坐标系中,横坐标都是整数的点称为整点,设k为整数,当直线y=x-3
与y=kx+k的交点为整点时,k的值能够取( )
(A)2个 (B)4个 (C)6个 (D)8个
19.甲、乙二人在如图所示的斜坡AB上作往返跑训练.已知:甲上山的速度是a米/分,下山的速度是b米/分,(a
12a米/分,下山的速度是2b米/分.如果甲、乙二人同时从点A出发,时间为t(分),离开点A的路程为S(米),?那么下面图象中,大致表示甲、乙二人从点A出发后的时间t(分)与离开点A的路程S(米)?之间的函数关系的是( )
20.若k、b是一元二次方程x2+px-│q│=0的两个实根(kb≠0),在一次函数y=kx+b中,y随x的增大而减小,则一次
函数的图像一定经过( )
(A)第1、2、4象限 (B)第1、2、3象限 (C)第2、3、4象限 (D)第1、3、4象限 二、填空题
1.已知一次函数y=-6x+1,当-3≤x≤1时,y的取值范围是________.
2.已知一次函数y=(m-2)x+m-3的图像经过第一,第三,第四象限,则m的取值范围是________.
3.某一次函数的图像经过点(-1,2),且函数y的值随x的增大而减小,请你写出一个符合上述条件的函数关系式:
_________.
4.已知直线y=-2x+m不经过第三象限,则m的取值范围是_________.
5.函数y=-3x+2的图像上存在点P,使得P?到x?轴的距离等于3,?则点P?的坐标为__________. 6.过点P(8,2)且与直线y=x+1平行的一次函数解析式为_________. 7.y=
23x与y=-2x+3的图像的交点在第_________象限. 8.某公司规定一个退休职工每年可获得一份退休金,?金额与他工作的年数的算术平方根成正比例,如果他多工作a
年,他的退休金比原有的多p元,如果他多工作b年(b≠a),他的退休金比原来的多q元,那么他每年的退休金是(以a、b、p、?q?)表示______元.
9.若一次函数y=kx+b,当-3≤x≤1时,对应的y值为1≤y≤9,?则一次函数的解析式为________.
10.(湖州市南浔区2005年初三数学竞赛试)设直线kx+(k+1)y-1=0(为正整数)与两坐标所围成的图形的面积为
Sk(k=1,2,3,……,2008),那么S1+S2+…+S2008=_______.
11.据有关资料统计,两个城市之间每天的电话通话次数T?与这两个城市的人口数m、n(单位:万人)以及两个城市间的距离d(单位:km)有T=
kmnd2的关系(k为常数).?现测得A、B、C三个城市的人口及它们之间的距离如图所示,且已知A、B两个城市间每天的电话通话次数为t,那么B、C两个城市间每天的电话次数为_______次(用t表示).
三、解答题
1.已知一次函数y=ax+b的图象经过点A(2,0)与B(0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y的值在-4≤y≤4范围内,求相应的y的值在什么范围内.
2.已知y=p+z,这里p是一个常数,z与x成正比例,且x=2时,y=1;x=3时,y=-1. (1)写出y与x之间的函数关系式;
(2)如果x的取值范围是1≤x≤4,求y的取值范围.
3.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.?小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:
第一档 第二档 第三档 第四档 凳高x(cm) 37.0 40.0 42.0 45.0 桌高y(cm) 70.0 74.8 78.0 82.8 (1)小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式;(不要求写出x
的取值范围);(2)小明回家后,?测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由.
4.小明同学骑自行车去郊外春游,下图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3)?求小明出发多长时间距家12千米?
5.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B?在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,?求正比例函数和一次函数的解析式.
6.如图,一束光线从y轴上的点A(0,1)出发,经过x轴上点C反射后经过点B(3,3),求光线从A点到B点经过的路线的长.
7.由方程│x-1│+│y-1│=1确定的曲线围成的图形是什么图形,其面积是多少?
8.在直角坐标系x0y中,一次函数y=
23x+2的图象与x轴,y轴,分别交于A、B两点,?点C坐标为(1,0),点D在x轴上,且∠BCD=∠ABD,求图象经过B、D?两点的一次函数的解析式.
9.已知:如图一次函数y=
12x-3的图象与x轴、y轴分别交于A、B两点,过点C(4,0)作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标.
10.已知直线y=
43x+4与x轴、y轴的交点分别为A、B.又P、Q两点的坐标分别为P(?0,-1),Q(0,k),其中0
11.(2005年宁波市蛟川杯初二数学竞赛)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30?台派往A地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:
甲型收割机的租金 乙型收割机的租金 A地 1800元/台 1600元/台 B地 1600元/台 1200元/台 (1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围.
(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,?说明有多少种分派方案,并将各种方案写出.
12.已知写文章、出版图书所获得稿费的纳税计算方法是
f(x)=??(x?800)20%(1?30%),x?400?x(1?20%)20%(1?30%),x?400 其中f(x)表示稿费为x元应缴纳的税额.假如张三取得一笔稿费,
缴纳个人所得税后,得到7104元,?问张三的这笔稿费是多少元?
13.某中学预计用1500元购买甲商品x个,乙商品y个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购买甲商品的个数比预定减少10个,总金额多用29元.?又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么买甲、乙两商品支付的总金额是1563.5元. (1)求x、y的关系式;
(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x,y的值.
14.某市为了节约用水,规定:每户每月用水量不超过最低限量am3时,只付基本费8元和定额损耗费c元(c≤5);若用水量超过am3时,除了付同上的基本费和损耗费外,超过部分每1m3付b元的超额费.
某市一家庭今年一月份、二月份和三月份的用水量和支付费用如下表所示:
用水量(m3) 交水费(元) 一月份 9 9 二月份 15 19 三月 22 33 根据上表的表格中的数据,求a、b、c.
15.A市、B市和C市有某种机器10台、10台、8台,?现在决定把这些机器支援给D市18台,E市10台。
已知:从A市调运一台机器到D市、E市的运费为200元和800元;从B?市调运一台机器到D市、E市的运费为300元和700元;从C市调运一台机器到D市、E市的运费为400元和500元.
(1)设从A市、B市各调x台到D市,当28台机器调运完毕后,求总运费W(元)关于x(台)的函数关系式,并求W的最大值和最小值.
(2)设从A市调x台到D市,B市调y台到D市,当28台机器调运完毕后,用x、y表示总运费W(元),并求W的最大值和最小值.