11
?1?1??1?????P?X?偶数??1?22?22i5.(1)
??22?124???122i???limi????1??1, ?1?22?3?(2)
P?X?5??1?P?X?4??1?1516?116, 1???(3)
P?X?3的倍数???1??1???1?i?23?23??????123i?lim.
i?1i??1?17236.(1) X~P?0.5t??P?1.5? P?X?0??e?1.5.
(2)
0.5t?2.5 P?x?1??1?P?x?0??1?e?2.5.
7.解:设射击的次数为X,由题意知
X~B?400,0.2?
P?X?2??1?P?X?1??1??1kk?0C4000.02k0.98400?k?1??18K?8k?0k!e?1?0.28?0.9972,其中8=400×0.02.
8.解:设X为事件A在5次独立重复实验中出现的次数,X~B?5,0.3? 则指示灯发出信号的概率
p?P?X?3??1?P?X?3??1?(C05150.300.7?C50.310.74?C250.320.73)
?1?0.8369?0.1631;
?x9. 解:因为X服从参数为5的指数分布,则F(x)?1?e5,P?X?10??1?F(10)?e?2,Y~B?5,e?2?则P{Y?k}?Ck5(e?2)k(1?e?2)5?k,k?0,1,?5
P{Y?1}?1-P{Y?0}?1?(1?e?2)5?0.5167
?10. (1)、由归一性知:1??????f(x)dx??2?acosxdx?2a,所以1
?a?
2
. 2??(2)、P{0?X??4}??4102cosxdx?12sinx|204?4. 11. 解 (1)由F(x)在x=1的连续性可得xlim?1?F(x)?limx?1?F(x)?F(1),即A=1.
(2)P?0.3?X?0.7??F(0.7)?F(0.3)?0.4.
(3)X的概率密度
f(x)?F?(x)???2x,0?x?1?0, . ?12. 解 因为X服从(0,5)上的均匀分布,所以
f(x)??1?0?x?5?5
?0其他 若方程4x2?4Xx2?X?2?0有实根,则??(4X)2?16X?32?0,即
X?2 X??1 ,所以有实根的概率为
11
12
p?P?X?2??P?X??1???52?1113dx??0dx?x5? 2??55513. 解: (1) 因为
X~N(3,4) 所以
??(1)??(0.5)?1?0.8413?0.6915?1?0.5328
??(3.5)??(?3.5)?1?2?(3.5)?1
?2?0.998?1?0.996P{2?X?5}?F(5)?F(2)
P??4?X?10??F(10)?F(?4)
P?X?2??1?P?X?2??1?P??2?X?2?
?1??F(2)?F(?2)??1???(?0.5)??(?2.5)?1???(2.5)??(0.5)??1?0.3023?0.6977
?
P?X?3??1?P?X?3??1?F(3)?1??(0)?1?0.5?0.5
(2)
P?X?c??1?P?X?c?,则P?X?c??1?F(c)??(c?3)?1,经查表得
2221c?3,即?0,得c?3;由概率密度关于x=3对称也容易看出。 22d?3(3) P?X?d??1?P?X?d??1?F(d)?1??()?0.9,
2d?3d?3则?()?0.1,即?(-)?0.9,经查表知?(1.28)?0.8997,
22d?3故-?1.28,即d?0.44; 2kk14. 解:P?X?k??1?P?X?k??1?P??k?X?k??1??()??(?)
?(0)???
k?2?2?()?0.1
?所以 15. 解
k?()?0.95,p?X?k?X~N(?,?2)则
?P?X??????P?????X?????F(???)?F(???)
??F(k)??(k)?0.95;由对称性更容易解出;
?
??(??????????)??()
????(1)??(?1) ?2?(1)?1?0.6826
上面结果与?无关,即无论?怎样改变,P16. 解:由X的分布律知
p
?X?????都不会改变;
1111 5153011 56
12
13 x -2 -1 0 1 3 X2 4 1 0 1 9 X 2 1 0 1 3 所以 Y的分布律是 Y 0 1 4 9
p 17Z的分布律为 5 30 15 1130 Y 0 1 2 3
p 15 711130 5 30 17. 解 因为服从正态分布N(?,?2),所以
??)2则 F(x)?1x(x2?2dx,FY(y)?p?ex?y?,
2?????e?当y?0时,FY(y)?0,则fY(y)?0
当
y?0时,FY(y)?p?ex?y??p?x?lny?
2f'Y(y)?FY(y)?(F(lny))??11y??)2?2ye?(ln
2??12?(lny??)e?2?2y?0所以Y的概率密度为
f(y)??1Y??y?02??;
y?018. 解
X~U(0,1),
f(x)???10?x?1?0 , FY(y)?p?Y?y??p?1?x?y??1?F(1?y),
所以
f?1,0?1?y?1?1,0?y?1Y(y)?fX(1?y)???0,其他???0,其他 19. 解:X~U(1,2),则
f(x)???11?x?2?0其他
FY(y)?P?Y?y??P?e2X?y?
当y?0时,F(y)?P?e2XY?y??0,
f(x)?1e?(x??)22?2,2??
13
14
当
y?0时,
FY(y)11???P?X?lny??FX(lny),
22??'11?1?fX(lny)e2?x?e4fY(y)?FY(y)?(F(lny))???222?其他?0?1e2?x?e4???2y其他??01?1??PX?y20. 解: (1) FY(y)?P??F(y) ???Y?y?P3X?y??X1133??111'fY1(y)?FY1(y)?(F(y))??fX(y)
33332??x?1?x?1因为fX(x)??2
其他??0所以
1?12?111?y,?1?y?1?y2,?3?y?3??18 fY1(y)?fX(y)??183,其他33??其他?0,?0(2)
FY2(y)?P?Y2?y??P?3?X?y??P?X?3?y??1?FX(3?y), fY2(y)?FY'2(x)?[1?FX(3?y)]'?fX(3?y)
因为
32??xfX(x)??2??0?1?x?1,
其他 所以
?3?3?(3?y)2,?1?3?y?1?(3?y)2,2?y?4fY2(y)?fX(3?y)??2??2
???0,其他?0,其他2',fY(y)?FY(x)?0 ??(y)?PX?y?0333(3)FY2???(y)?PY?y?PX?y? 33 当y?0时,FY 当
y?0时,FY3(y)?P?y?X??y?FX'
fY3(y)?FY'3(x)?[F?1[f?fY3(y)??2yX??32??xfX(x)??2??0?y??F(?X?y??F(?y),
1y)]?[f?y??f(?2yXXX?y)]
所以
?y??f0(?y)],,y?0y?0,
因为
?1?x?1,
其他 14
15
所以
3??y,0?y?1 fY3(y)??2,其他??0X~B?10 ,0.2?
四.应用题
1.解:设X为同时打电话的用户数,由题意知
设至少要有k条电话线路才能使用户再用电话时能接通的概率为0.99,则
P{X?k}??C0.20.8i?0i10ik10?i??i?0k?ii!e???0.99,其中??2,
查表得k=5.
2.解:该问题可以看作为10重伯努利试验,每次试验下经过5个小时后组件不能正常工作这一基本结果的概率为1-eX为10块组件中不能正常工作的个数,则
?0.4,记
X~B(10,1?e?0.4),
5小时后系统不能正常工作,即
?X?2?,其概率为
P?X?2??1?P?X?1?01 ?1?C10(1?e?0.4)0(e?0.4)10?C10(1?e?0.4)1(e?0.4)10?1
?0.8916.23.解:因为X~N(20,40),所以
P{X?30}?P{?30?X?30}?F(30)?F(?30)
30?20?30?20)??()4040 ??(0.25)??(1.25)?1
?0.5187?0.8944?1?0.4931设Y表示三次测量中误差绝对值不超过30米的次数,则X~B(3,0.4931),
??((1)
0P{Y?1}?1?P{Y?0}?1?C30.49310(1?0.4931)3?1-0.50693?0.8698.
(2)
4.解:
1P{Y?1}?C30.49311?0.50692?0.3801.
当y?0时,{Y?y}是不可能事件,知F(y)?0,
??y0 当0?y?2时,Y和X同分布,服从参数为5的指数分布,知F(y) 当
1?5edx?1?e5x?y5,
y?2时,{Y?y}为必然事件,知F(y)?1,
因此,Y的分布函数为
?0 , y?0?y?? F(y)??1-e5,0?y?2;
?1,y?2??115.解:(1) 挑选成功的概率p?4?;
C870
15