好文档 - 专业文书写作范文服务资料分享网站

考点21 求和方法(第1课时)——2024年高考数学专题复习真题练习

天下 分享 时间: 加入收藏 我要投稿 点赞

9.设数列?an?的前n项和为Sn,且2Sn?3an?1. (1)求?an?的通项公式;

3n13(2)若bn?,求{bn}的前n项和Tn,并比较Tn与的大小.

16?an?1??an?1?1?

10.已知等差数列?an?满足a2?a4?6,前7项和S7?28. (1)求数列?an?的通项公式;

2n(2)设bn?an,求数列?bn?的前n项和Tn. an?12?12?1????

【题组二 错位相减法】

1.已知正项等差数列{an}满足a2?a5?9,a3a4?20,等比数列{bn}的前n项和Sn满足Sn?2n?c,其中c是常数.

(1)求c以及数列{an}、{bn}的通项公式;

(2)设cn?anbn,求数列{cn}的前n项和Tn.

2.已知数列{an}的前n项和Sn满足Sn?an?1?1,且a1?1,数列{bn}中,b1?1,b5?9,

2bn?bn?1?bn?1(n?2).

(1)求数列{an}和{bn}的通项公式;

(2)若cn?an?bn,求{cn}的前n项的和Tn.

223.在正项数列?an?中,a1?1?2,an?an?1?1??2an?1?an?1?,bn?an?1. an(1)求数列?an?与?bn?的通项公式; (2)求数列n?2an?bn?

?2?的前n项和T.

n

24.已知数列?an?的前n项和Sn?3n?8n,?bn?是等差数列,且an?bn?bn?1.

(Ⅰ)求数列?bn?的通项公式;

(an?1)n?1Tc(Ⅱ)令cn?n.求数列?n?的前n项和n.

(bn?2)

5.已知数列{an}中,a1?1,an?1?an(n?N*). an?4(1)求证:??11???是等比数列,并求{an}的通项公式an; a?n3?n(2)数列{bn}满足bn?(4?1)?

n?1?an,求数列{bn}的前n项和Tn. n3

考点21 求和方法(第1课时)——2024年高考数学专题复习真题练习

9.设数列?an?的前n项和为Sn,且2Sn?3an?1.(1)求?an?的通项公式;3n13(2)若bn?,求{bn}的前n项和Tn,并比较Tn与的大小.16?an?1??an?1?1?10.已知等差数列?an?满足
推荐度:
点击下载文档文档为doc格式
191dm26c8t6c4rp7oypx5gf8x599m300svl
领取福利

微信扫码领取福利

微信扫码分享