考点21 求和方法(第一课时)
【题组一 裂项相消】
1.在数列?an?中,有a1?a2?a3???an?n?2nn?N2?*?.
(1)证明:数列?an?为等差数列,并求其通项公式;
(2)记bn?1,求数列?bn?的前n项和Tn.
an?an?1
2.已知数列?an?的前n项和Sn满足3Sn?an?1?0. (1)求?an?的通项公式;
(2)设bn?log16an,求数列??1??的前n项和Tn.
?bn?bn?1?
3.记数列?an?的前n项和为Sn.若2Sn?3an?3. (1)证明:?an?为等比数列;
(2)设bn?log9an,求数列??1??的前n项和Tn.
?bnbn?1?
2224.正项数列{an}的前n项和Sn满足Sn?(n?n?1)Sn?(n?n)?0;
(1)求数列{an}的通项公式an;
(2)令bn?13,数列{bn}的前n项和为Tn,证明:对于任意的n?N*,都有Tn?;
(n?2)an8
5.已知数列?an?中,a1?1,a2?3,其前n项和为,且当n?2时,an?1Sn?1?anSn?0 (1)求数列{an}的通项公式;
(3)设bn?9an,记数列{bn}的前n项和为Tn,求Tn.
(an?3)(an?1?3)
26.设数列?an?,其前n项和Sn??3n,又?bn?单调递增的等比数列, b1b2b3?512,a1?b1 ?a3?b3.
(Ⅰ)求数列?an?,?bn?的通项公式;
(Ⅱ)若cn?bn2 ,求数列?cn?的前n项和Tn,并求证:?Tn?1.
?bn?2??bn?1?3
7.已知数列{an}的前n项和为Sn,且Sn?2an?1.
(1)求数列{an}的通项公式;
(2)记bn?2an,求数列{bn}的前n项和Tn.
(an?1)(an?1?1)
8.设数列?an?的前n项和为Sn,且?Sn?1??anSnn?N2?*?.
(1)求S1、S2、S3的值;
(2)求出Sn及数列?an?的通项公式; (3)设bn???1?n?1?n?1?2anan?1?n?N*?,求数列?bn?的前n项和为Tn.