百度文库
?124?????2?,?3??解:2?1??????
??110??
当??24??124??2???1????1??17??3???2???????110????3???1????2?4???????0?1?4?????????????2?1???0??4?7???2?1?0?1?90???4??4??4?
?0??9时,r(A)?2达到最小值。 4?2?5321??5?8543??的秩。 5.求矩阵A???1?7420???4?1123???2?532?5?854解: A???1?742??4?1121?3??1?,?3????????0??3??1?742?5?854??2?532??4?1120??2???1????5??3???1????2?3?4???1????4???????? 1??3?0?1?? 0??0?420??2???3????3??1?7?027?15?63??4???3????3???2?,?3????????→??09??5?21???027?15?63?∴r(A)?2。 6.求下列矩阵的逆矩阵:
2?1?74?09?5?2??0000?00?00?1?32???
1(1)A??30???1?1??1??1?32100??2???1??3???3???1????1???1010????解:?AI???30??1?1001??1?100??3???2??4?1?32?0?11????2????1????112????04?3?101??100??1?32?0?97????2???3??2??? 310????04?3?101??00??1???3????2??1?321?01?1?1?1?2????2???3??1???
???1349??00??100113??010237? ????001349??A?1?113??
??237????349???1?30?5?8?18??0102????1???2??3???37???49??0013???13?6?3???(2)A =?4?2?1. ???11??2?11
∴
百度文库
01?30???13?6?3100???10???1???2????3???解:?AI???4?2?1010??????4?2?1010→ ??????11001?11001??2??2?0?130??10?2?,?3????????0?2?1?4130?????????12?61??01??2???1????4??3???1??2?1????1?0?130??10?01?→
12?61????0?2?1?4130???100?130??100?130????3????2???2???0112?61????2????3?????1???0102?7?1?
??001012???????001012???∴A-1 =??130??2?7?1? ??012???7.设矩阵A??12???35??,B??12???23??,求解矩阵方程XA?B.
?1210??1???2??2解:?AI????2???1????10??2????1??10?5?3501??????3????12?0?1?31?????????013 ∴
A?1????52??3?1?
?∴
X?BA?1???12???52? = ??10??23????3?1????11?? 四、证明题
1.试证:若B1,B2都与A可交换,则B1?B2,B1B2也与A可交换。 证:∵B1A?AB1, B2A?AB2
∴?B1?B2?A?B1A?B2A?AB1?AB2?A?B1?B2? 即 B1?B2也与A可交换。
?B1B2?A?B1?B2A??B1?AB2???B1A?B2?A?B1B2? 即 B1B2也与A可交换.
2.试证:对于任意方阵A,A?AT,AAT,ATA是对称矩阵。
证:∵?A?AT?T?AT??AT?T?AT?A?A?AT
12
2??1??
百度文库
∴A?AT是对称矩阵。 ∵(AA)=ATTT??T?AT?AAT
∴AAT是对称矩阵。 ∵ATA??T?AT?AT??T?ATA
∴ATA是对称矩阵.
3.设A,B均为n阶对称矩阵,则AB对称的充分必要条件是:AB?BA。 证: 必要性:
∵A?A , B?B 若AB是对称矩阵,即?AB??AB
TTT而?AB??BA?BA 因此AB?BA
TT充分性:
TT若AB?BA,则?AB??BA?BA?AB
T∴AB是对称矩阵.
4.设A为n阶对称矩阵,B为n阶可逆矩阵,且B 证:∵A?A BT?1?1?BT,证明B?1AB是对称矩阵。
?BT
?1T?B
?1AB?1???AB???B?TT?BT?AT?BT??T?B?1AB
∴BAB是对称矩阵. 证毕.
《经济数学基础》形成性考核册(四)
(一)填空题 1.函数f(x)?4?x?21_________。答案:(1,2)??2,4?. 的定义域为__________ln(x?1)2. 函数y?3(x?1)的驻点是________,极值点是 ,它是极 值点。答案:x=1;(1,0);小。 3.设某商品的需求函数为q(p)?10e?p2,则需求弹性Ep? .答案:Ep=?p 213
百度文库
4.行列式
1D??1?11111?____________?1A???0??01.答案:4.
?116?,则t__________时,方程组有唯一解. 答案:t?132??0t?10??15. 设线性方程组AX?b,且
(二)单项选择题
??1.
1. 下列函数在指定区间(??,??)上单调增加的是( B ).
A.sinx B.e x C.x 2 D.3 – x 2. 设f(x)?1,则f(f(x))?( C ). x112A. B.2 C.x D.x
xxx?x1e?e11ex?e?xdx?0 B.?dx?0 C.?xsinxdx?0 D.?(x2?x3)dx?0 A.??1?1-1-12213. 下列积分计算正确的是( A ).
4. 设线性方程组Am?nX?b有无穷多解的充分必要条件是( D ).
A.r(A)?r(A)?m B.r(A)?n C.m?n D.r(A)?r(A)?n
?x1?x2?a1?5. 设线性方程组?x2?x3?a2,则方程组有解的充分必要条件是( C ).
?x?2x?x?a233?1A.a1?a2?a3?0 B.a1?a2?a3?0 C.a1?a2?a3?0 D.?a1?a2?a3?0
三、解答题
1.求解下列可分离变量的微分方程: (1) y??e解:
x?y
dy?ex?ey , e?ydy?exdx ?e?ydy??exdx , ?e?y?ex?c dxdyxex(2)?2
dx3y解: 3ydy?xedx
2x?3y2dy??xdex y3?xex??exdx y3?xex?ex?c
2. 求解下列一阶线性微分方程: (1)y??2y?(x?1)3 x?114
百度文库
解:y?e?2?????dx?x?1???2??3?x?1dx???x?1?e??e2ln?x?1?dx?c???????x?1?e3?2ln?x?1?dx?c??x?1??2???x?1?dx?c?
??x?1??2?1?x?1?2?c?? 2??(2)y??解:y?ey?2xsin2x x??1??????dx??2xsin2x?e?x?dx?c??elnx??????1?????dx?x???2xsin2x?e?lnxdx?c
?1???x??2xsin2x?dx?c??x?sin2xd2x?c ?x??cos2x?c?
x??3.求解下列微分方程的初值问题: (1)y??e2x?y??,y(0)?0
dye2x?y 解:
dxe
y2xedy?e??dx y e?12xe?c 2 用x?0,y?0代入上式得:
101e?c, 解得c? 2212x1y ∴特解为:e?e?
22 e?0 (2)xy??y?e?0,y(1)?0 解:y??x11y?ex xx?11xdx?e?xdx??x?dx?c? y?e??x?e?
?? ?e?lnx?1xlnx????e?edx?c? ?x?xx ?1x??edx?c??1?ex?c
? 用x?1,y?0代入上式得:
15