要性不言而喻.
态也容易掌握了.
一、导数在高中数学新课程中的地位
(一)有利于学生更好地理解函数的性态
陈雨涵
盐城师范学院毕业论文(设计)
拓展学生的解题思路,提高学生分析问题和解决问题的能力.
浅谈导数在高中数学教学中的应用
的一阶导数判定函数的单调区间、极值点、最值点;利用函数的二阶导数判定函数的凹
《普通高中数学课程标准(实验)》指出:高中数学课程是由必修课程和选修课程两
点法就很难较为准确地作出图像.但是,掌握了导数的知识之后,学生就可以利用函数
像表示出来,因而,如果能准确地作出函数的图像,函数的性质就一目了然,函数的性
单调性、奇偶性、周期性、有界性等.我们知道,函数的这些性质都可以通过函数的图
部分构成的.必修课程是整个高中数学课程的基础,选修课程是在完成必修课程学习的
要工具.本课题期望通过对导数在新课程中的地位以及在中学数学解题应用中的探讨,
纽带,是高中数学知识的一个重要交汇点,是联系多个章节内容以及解决相关问题的重
列2、系列3、系列4等组成.在系列1和系列2中都选择了导数及其应用.显然,导数的重
基础上,希望进一步学习数学的学生根据自己的兴趣和需求选修.选修课程由系列1、系
如果所涉及的函数是基本初等函数,用描点法就可以作出函数的图像.但是,如果
导数在现行的高中数学教材中处于一种特殊的地位,是联系高等数学与初等数学的
所涉及的函数是非基本初等函数,比如y?x3?2x2?x?1,y?ex?x?1等函数,仅用描
[摘 要]导数是联系高等数学与初等数学的纽带,高中阶段引进导数的学习
有利于学生更好地理解函数的性态,掌握函数思想,搞清曲线的切线问题,学好其他学科并发展学生的思维能力.因而在中学数学教学及解题过程中,可以利用导数思想解决诸如函数(解析式、值域、最(极)值、单调区间等)问题、切线问题、不等式问题、数列问题以及实际应用等问题.[关键词]导数 新课程 应用
在高中阶段学习函数时,为了理解函数的性态,学生主要学习函数的定义域、值域、
第 1 页 共 10 页
性.
宽了学生的知识面.
(四)有利于学生学好其他学科
(三)有利于学生弄清曲线的切线问题
(二)有利于学生更好地掌握函数思想
函数模型,并且利用导数,来解决相关问题.
k?limx?x0盐城师范学院毕业论文(设计)
y?y0?f?(x0)(x?x0).
趋向极限位置PT,那么直线PT就称为曲线C在点P处的切线.
f(x)在点x?x0的切线斜率k,正是割线斜率在x?x0时的极限,即
由导数的定义,k?f?(x),所以曲线y?f(x)在点(x0,y0)的切线方程是
动物体的运动方程:S?S(t),算出物体的瞬时速度:V(t)?dsdt、瞬时加速度:
f(x)?f(x0).
x?x0与曲线有一个公共点的直线.如果学习了导数的定义及其几何意义后,学生就知道
应用性的作用,可以轻松简捷地获得问题的解决,这也正体现和显示了新课程的优越
这就是说:函数f在点x0的导数f?(x0)是曲线y?f(x)在点(x0,y0)处的切线斜率[1].
变化率.在学习并且掌握了导数及其应用以后,学生就可以很容易地根据做变速直线运
的基本对象是函数,而且以函数的极限为基础.作为微积分的一个重要的分支——微分
它在物理、化学、生物、天文、工程以及地质学等中都有着广泛的应用.微积分所讨论
证明不等式,解决数列求和的有关问题,以及解决一些实际应用问题,我们都可以构造
型建立函数关系,利用函数思想,然后用导数来研究其性质,充分发挥导数的工具性和
就能较为准确地作出函数的图像.这样就有利于学生更好地理解函数的性态,同时也拓
凸区间、拐点;利用极限的思想找出其水平渐近线和垂直渐近线,然后再结合描点法,
学,主要涉及变量的“变化率”问题,对于y?f(x),导数f?(x)可以解释为y关于x的
曲线C上一点Q,作割线PQ,当点Q沿曲线C趋向点P时,如果割线PQ绕点P旋转而
A(t)?d2sdt2;对化学中的反应速度、冷却速度等也都可以通过微积分的方法来解决
从而,学生就掌握了切线的一般定义:设有曲线C及C上的一点P,在点P外另取学生由于受“圆上某点的切线”的定义的影响,误认为曲线在某点处的切线,就是其实我们不难发现,函数是建立在中学数学知识和导数之间的一座桥梁,不管是在数学上的许多问题,用初等数学方法是不能解决的,或者难以解决,而通过数学模
高中的物理、化学等课程都与数学紧密相关,我们所学的导数是微分学的核心概念,
第 2 页 共 10 页
了.
的学习负担.
生学习的[2].
的辩证思维能力.
⒈利用导数求函数的解析式
二、导数在解题中的应用
(一)利用导数解决函数问题
的一些基本性质就会显得更加的明了.
(五)有利于发展学生的思维能力
界的思维方式,提高学生的思维能力[2].
盐城师范学院毕业论文(设计)
度,而且也使试题具有更广泛的实践意义.下面举例探讨导数的应用.
为分析问题和解决问题的重要工具.将导数与传统内容结合,不仅能加强能力的考查力
点.这几年的高考命题趋势表明:导数已经由以往的“配角”地位上升到“主角”,成
为我们展现出了一道亮丽的风景线,也使它成为新教材高考试题的热点和命题新的增长
体会常量与变量、有限与无限、近似与准确、动与静、直与曲的对立与统一,发展学生
问题,而不仅仅是停留在静态的、不变的、有限的常量数学观点上.在学习过程中逐步
究曲线在某一点处的性质.这种从局部到整体,再由整体到局部的思想方法是很值得学
再过渡到一个区间上;在应用导数解决实际问题时,利用函数在某个区间上的性质来研
化”、从“有限到无限”的思想,认识和理解这种特殊的极限,通过它了解这种认识世
了一定的变化:即在高中阶段,应通过大量的实例,让学生理解从“平均变化到瞬时变
来学.这样造成的后果是:不仅使学生感受不到学习导数有什么好处,反而加重了他们
用解析式表示函数关系,便于研究函数的性质,而利用导数求函数的解析式,函数
导数作为高中新教材的新增内容之一,它给高中数学增添了新的活力,特别是导数
总之,通过学习导数,使学生学会以动态的、变化的、无限的变量数学观点来研究
而《普通高中数学课程标准(实验)》就对这一部分内容的教育价值、定位和处理做
在以前的课程标准中,无论是导数的概念还是应用,更多的是作为一种规则来教、
广泛的应用性,为解决函数、切线、不等式、数列、实际等问题带来了新思路、新方法,
例1 设函数y?ax3?bx2?cx?d的图像与y轴交点为P点,且曲线在P点处的切线
再者,还可以让学生体会研究导数所用的思想方法:先研究函数在某一点处的导数,
第 3 页 共 10 页
又
分析
f(x)的值域.
⒉利用导数求函数的值域
又函数在x?2处取得极值0,所以
f?(x)?12x?1⒊利用导数求函数的最(极)值
?12x?2?2x?1?2x?2也容易掌握,从而进一步明确了函数的性态.
???,由于解 显然,f(x)定义域为??12,例2 求函数f(x)?2x?1?x?2的值域.
??12a?4b?12?0,??8a?4b?20?0.盐城师范学院毕业论文(设计)
如果采用导数来求解,则较为容易,且一般问题都可行.
解得a?2,b??9,所以所求函数解析式为y?2x3?9x2?12x?4.
方程为12x?y?4?0,若函数在x?2处取得极值0,试确定函数的解析式.
f(?12)??62,所以函数f(x)?2x?1?x?2的值域是???.??62,k?12,故在x?0处的导数y?x?0?12,而y??3ax2?2bx?c,y?x?0?c,从而c?12,
可见当x??12时,f?(x)?0.所以f(x)?2x?1?x?2在??12,???上是增函数.而
又曲线在P点处的切线方程为y?12x?4,P点坐标适合方程,从而d??4,又切线斜率
它涉及到了函数知识的很多方面,用导数解决这类问题可以使解题过程简化,步骤清晰,
一般地,函数f(x)在闭区间?a,b?上可导,则f(x)在?a,b?上的最值求法:
2x?72x?2?2x?1求函数的值域是中学数学中的重点,也是难点,方法因题而异,不易掌握.但是,
先确定函数的定义域,然后根据定义域判断f?(x)的正负,进而求出函数
求函数的最(极)值是高中数学的重点,也是难点,是高考经常要考查的内容之一,
解 因为函数y?ax3?bx2?cx?d的图像与y轴交点为P点,所以P点的坐标为?0,d?,
第 4 页 共 10 页
2x?2?2x?12x?22x?1,
,
?⒈求过某一点的切线方程
f(x)单调递减.此方法简单快捷而且适用面广.
例4 求f(x)?x3?3x的单调区间.
解 由于f?(x)?3x2?3?3(x2?1)?3(x?1)(x?1),则
2(二)利用导数解决切线问题
⒋利用导数求函数的单调区间
32?上的最大值和最小值.区间??3,(1) 求函数f(x)在?a,b?上的极值点;
(2) 计算f(x)在极值点和端点的函数值;
解 显然,f(x)定义域为???,0???0,???,又
2?1?和?1,???,减区间为??1,0?和?0,1?.区间为???,盐城师范学院毕业论文(设计)
f(x)取得最小值?18;当x??1时,f(x)取得最大值2.
32?上的最大值和最小值.例3 求函数f(x)?x3?3x在??3,1?为函数f(x)的单调减区间.当x???1,1?时,f?(x)?0,所以??1,(3) 比较f(x)在极值点和端点的函数值,最大的是最大值,最小的是最小值.
意义,只需考虑f?(x)的正负即可,当f?(x)?0时,f(x)单调递增;当f?(x)?0时,
的单调性与函数的导数密切相关,运用导数知识来讨论函数单调性时,结合导数的几何
分析 应先确定函数f(x)的定义域,再利用导数讨论其单调区间.
又因为f(?3)??18,f(?1)?2,f(1)??2,f(32)??98,所以,当x??3时,
函数的单调性是函数的一个重要性质,是研究函数时经常要注意的一个性质.函数
3(x2?1)(x?1)(x?1),f?(x)?3x?3x?x2由f?(x)?0,得x??1或x?1;又由f?(x)?0,得?1?x?0或0?x?1,所以f(x)的增
分析 先求出f(x)的极值点,然后比较极值点与区间端点的函数值,即可得该函数在
1,32?时,f?(x)?0,所以??3,?1?,?1,32?为函数f(x)的单调增区间;当x???3,?1?或x??第 5 页 共 10 页