23抽屉原理
在数学问题中有一类与“存在性”有关的问题,例如:“13个人中至少有两个人出生
在相同月份”;“某校400名学生中,一定存在两名学生,他们在同一天过生日”;“2003个人任意分成200个小组,一定存在一组,其成员数不少于11”;“把[0,1]内的全部有理数放到100个集合中,一定存在一个集合,它里面有无限多个有理数”。这类存在性问题中,“存在”的含义是“至少有一个”。在解决这类问题时,只要求指明存在,一般并不需要指出哪一个,也不需要确定通过什么方式把这个存在的东西找出来。这类问题相对来说涉
及到的运算较少,依据的理论也不复杂,我们把这些理论称之为“抽屉原理”。 “抽屉原理”最先是由19世纪的德国数学家迪里赫莱(Dirichlet)运用于解决数学问题的,所以又称“迪里赫莱原理”,也有称“鸽巢原理”的。这个原理可以简单地叙述为“把10个苹果,任意分放在9个抽屉里,则至少有一个抽屉里含有两个或两个以上的苹果”。这个道理是非常明显的,但应用它却可以解决许多有趣的问题,并且常常得到一些令人惊异的结果。抽屉原理是国际国内各级各类数学竞赛中的重要内容,本讲就来学习它的有关知识及其应用。
(一) 抽屉原理的基本形式
定理1、如果把n+1个元素分成n个集合,那么不管怎么分,都存在一个集合,其中至少有两个元素。
证明:(用反证法)若不存在至少有两个元素的集合,则每个集合至多1个元素,从而n个集合至多有n个元素,此与共有n+1个元素矛盾,故命题成立。
在定理1的叙述中,可以把“元素”改为“物件”,把“集合”改成“抽屉”,抽屉原理正是由此得名。
同样,可以把“元素”改成“鸽子”,把“分成n个集合”改成“飞进n个鸽笼中”。“鸽笼原理”由此得名。
例题讲解
1. 已知在边长为1的等边三角形内(包括边界)有任意五个点(图1)。证明:至少有两个点之间的距离不大于
2.从1-100的自然数中,任意取出51个数,证明其中一定有两个数,它们中的一个是另一个的整数倍。
3.从前25个自然数中任意取出7个数,证明:取出的数中一定有两个数,这两个数中大数不超过小数的1.5倍。
4.已给一个由10个互不相等的两位十进制正整数组成的集合。求证:这个集合必有两个无公共元素的子集合,各子集合中各数之和相等。
5.在坐标平面上任取五个整点(该点的横纵坐标都取整数),证明:其中一定存在两个整点,它们的连线中点仍是整点。
6.在任意给出的100个整数中,都可以找出若干个数来(可以是一个数),它们的和可被100整除。
7. 17名科学家中每两名科学家都和其他科学家通信,在他们通信时,只讨论三个题目,而且任意两名科学家通信时只讨论一个题目,证明:其中至少有三名科学家,他们相互通信时讨论的是同一个题目。
课后练习
1.幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,??
那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理.
2.正方体各面上涂上红色或蓝色的油漆(每面只涂一种色),证明正方体一定有三个面颜色相同.
3.把1到10的自然数摆成一个圆圈,证明一定存在在个相邻的数,它们的和数大于17.
4.有红袜2双,白袜3双,黑袜4双,黄袜5双,蓝袜6双(每双袜子包装在一起)若取出9双,证明其中必有黑袜或黄袜2双.
5.在边长为1的正方形内,任意给定13个点,试证:其中必有4个点,以此4点
为顶点的四边开面积不超过
(假定四点在一直线上构成面积为零的四边形).
6.在一条笔直的马路旁种树,从起点起,每隔一米种一棵树,如果把三块“爱护树木”的小牌分别挂在三棵树上,那么不管怎样挂,至少有两棵挂牌的树之间的距离是偶数(以米为单位),这是为什么?
课后练习答案
1.解 从三种玩具中挑选两件,搭配方式只能是下面六种:
(兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿)
把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据原则1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同.
原则2 如果把mn+k(k≥1)个物体放进n个抽屉,则至少有一个抽屉至多放进m+1个物体.证明同原则相仿.若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能. 原则1可看作原则2的物例(m=1)
2.证明把两种颜色当作两个抽屉,把正方体六个面当作物体,那么6=2×2+2,根据原则二,至少有三个面涂上相同的颜色.
3.证明 如图12-1,设a1,a2,a3,…,a9,a10分别代表不超过10的十个自然数,它们围成一个圈,三个相邻的数的组成是(a1,a2,a3),(a2,a3,a4),(a3,a4,a5),…,(a9,a10,a1),(a10,a1,a2)共十组.现把它们看作十个抽屉,每个抽屉的物体数是a1+a2+a3,a2+a3+a4,a3+a4+a5,…a9+a10+a1,a10+a1+a2,由于
(a1+a2+a3)+(a2+a3+a4)+…+(a9+a10+a1)+(a10+a1+a2) =3(a1+a2+…+a9+a10) =3×(1+2+…+9+10)
根据原则2,至少有一个括号内的三数和不少于17,即至少有三个相邻的数的和不小于17.
原则1、原则2可归结到期更一般形式:
原则3把m1+m2+…+mn+k(k≥1)个物体放入n个抽屉里,那么或在第一个抽屉里至少放入m1+1个物体,或在第二个抽屉里至少放入m2+1个物体,……,或在第n个抽屉里至少放入mn+1个物体.
证明假定第一个抽屉放入物体的数不超过m1个,第二个抽屉放入物体的数不超过m2个,……,第n个抽屉放入物体的个数不超过mn,那么放入所有抽屉的物体总数不超过m1+m2+…+mn个,与题设矛盾.
4.证明 除可能取出红袜、白袜3双外.还至少从其它三种颜色的袜子里取出4双,根据原理3,必在黑袜或黄袜、蓝袜里取2双.
上面数例论证的似乎都是“存在”、“总有”、“至少有”的问题,不错,这正是抽屉原则的主要作用.需要说明的是,运用抽屉原则只是肯定了“存在”、“总有”、“至少有”,却不能确切地指出哪个抽屉里存在多少. 制造抽屉是运用原则的一大关键
首先要指出的是,对于同一问题,常可依据情况,从不同角度设计抽屉,从而导致不同的制造抽屉的方式.
5.证明如图12-2把正方形分成四个相同的小正方形.
因13=3×4+1,根据原则2,总有4点落在同一个小正方形内(或边界上),以此4
点为顶点的四边形的面积不超过小正方形的面积,也就不超过整个正方形面积的.
事实上,由于解决问题的核心在于将正方形分割成四个面积相等的部分,所以还可以把正方形按图12-3(此处无图)所示的形式分割. 合理地制造抽屉必须建立在充分考虑问题自身特点的基础上.
6.解如图12-4(设挂牌的三棵树依次为A、B、C.AB=a,BC=b,若a、b中有一为偶数,命题得证.否则a、b均为奇数,则AC=a+b为偶数,命题得证.
下面我们换一个角度考虑:给每棵树上编上号,于是两棵树之间的距离就是号码差,由于树的号码只能为奇数和偶数两类,那么挂牌的三棵树号码至少有两个同为奇数或偶数,它们的差必为偶数,问题得证.
后一证明十分巧妙,通过编号码,将两树间距离转化为号码差.这种转化的思想方法是一种非常重要的数学方法