»ùÓÚÑ¡ÔñËã×ÓµÄÒÅ´«Ëã·¨¸Ä½ø
¶åûÈê
¡¾ÆÚ¿¯Ãû³Æ¡¿¡¶°ì¹«×Ô¶¯»¯£¨×ۺϰ棩¡· ¡¾Äê(¾í),ÆÚ¡¿2015(000)008
¡¾ÕªÒª¡¿ÒÅ´«Ëã·¨ÊÇÒ»ÖÖËæ»úÈ«¾ÖËÑË÷ºÍÓÅ»¯·½·¨£¬ÔçÊìÏÖÏóÊǸÃËã·¨µÄ×î´óȱµã¡£±¾ÎĶÔÒÅ´«Ëã·¨µÄÑ¡ÔñËã×Ó½øÐиĽø£¬¸Ä½øµÄ˼·ÊÇ£ºÔÚ½ø»¯µÄ²»Í¬½×¶Î£¬ÓÅÁ¼¸öÌåËùÕ¼µÄ±ÈÖز»Í¬£¬Òò´ËÔÚ²»Í¬µÄ½×¶Î£¬²ÉÓò»Í¬µÄÑ¡Ôñ²ßÂÔ£¬±£Ö¤ÒÅ´«Ëã·¨µÄÊÕÁ²Ð§¹û¡£×îºó£¬¶Ô¸Ä½øµÄÒÅ´«Ëãͨ¹ýʵÑé·ÂÕæµÄ·½·¨½øÐÐÑéÖ¤¡£%Genetic algorithm is a stochastic global search and optimization methods, the biggest drawback of the algorithm is prematurity. In this paper, the choice of genetic algorithms operator is improved. The idea is that: in the different stages of evolution, the proportion of good individual is different, so in different stages, the convergence effect of genetic algorithm is ensured by different selection strategies . Finally , the improved genetic algorithm is ver-ified by experiments . ¡¾×ÜÒ³Êý¡¿4Ò³(59-61,42)
¡¾¹Ø¼ü´Ê¡¿ÒÅ´«Ëã·¨;ÊÕÁ²;Ñ¡ÔñËã×Ó ¡¾×÷Õß¡¿¶åûÈê
¡¾×÷Õßµ¥Î»¡¿É½Î÷´óѧÉÌÎñѧԺ ÐÅϢѧԺ Ì«Ô 030031 ¡¾ÕýÎÄÓïÖÖ¡¿ÖÐÎÄ ¡¾ÖÐͼ·ÖÀà¡¿TP301.6 ¡¾Ïà¹ØÎÄÏס¿
»ùÓÚÑ¡ÔñËã×ÓµÄÒÅ´«Ëã·¨¸Ä½ø



