好文档 - 专业文书写作范文服务资料分享网站

本科毕业论文开题报告 模板 - 图文

天下 分享 时间: 加入收藏 我要投稿 点赞

本科生毕业设计(论文)开题报告

题目:胶囊内窥镜的磁导航式运动检测台设计

学号 012006007719 _

姓名 王 琳 _

指导教师 朱福龙 _

院(系)专业 机械学院机械设计制造及其自动化

华中科技大学教务处制

华中科技大学本科生毕业设计(论文)开题报告

1 课题来源、目的、意义以及国内外基本研究概况

1.1 课题来源

本课题来源于国家863资助的“基于 MEMS 技术的微型胶囊内窥镜研究”项目,编号2008AA04Z313。

1.2 课题研究的目的和意义

1.2.1 目的

通过对主动运动式无线胶囊内窥镜的研究,开发出一套基于准静态磁场磁拖动原理的胶囊内窥镜检测用途的五联动轴磁导航式运动控制系统。通过对外部控制磁导航仪系统各个部件进给速度、转动速度和相对运动速度的精确控制,可进一步实现在消化道环境下对内嵌永磁体胶囊内窥镜快速运动、缓慢运动和局部定位等形式的主动控制。 1.2.2 意义

消化道是人体中的多发病区域,消化道疾病人群全球普遍达到10%以上,中国更高达13%以上。传统内窥镜是消化道诊疗的主要方式,它使用插管的方式将摄像头和组织取样等装置深入到胃部、肠管部位,对消化道内壁进行有效诊断或组织取样、微型手术等动作,是消化道检查最有效的方式,疾病检出率高。但传统内窥镜插管的方式对于被检测者极不舒服,甚至造成伤害,对于体虚和心血管患者不能进行,而且插管方式还存在一定的交叉感染的机会,人们对于此也有一定的抗拒心理,因此不利于检查的普及化。另外,人体的小肠是5-7米长、平均直径为2.5厘米的狭长多曲管径,传统的内窥镜很难深入小肠进行检查。小肠疾病检查几乎是消化道检查的盲区[1]。

无线胶囊内窥镜检测是近十年来发展起来的无创医疗检测技术,通过一个集成LED照明芯片、成像装置、无线传输模块以及功率源的具有普通药丸大小的可吞服式胶囊内窥镜,在人体胃肠道内执行病灶检测,并将胃肠图像数据无线传输到外围接收装置,由富有经验的医生在工作站上进行在线或离线诊断。无线胶囊内窥镜克服了传统推挽式肠胃镜有创痛苦、检测范围有限(只能检测小肠前端)和存在交叉感染的缺点。

在消化道疾病的临床诊断上,比传统技术更成功的应用促成了无线胶囊内窥镜的迅快发展,然而,现有的胶囊内窥镜还存在着一些不足:1)只能依靠消化道自身的蠕动被动地移动,因而过程持续时间长而不可控,且存在检查盲区和不能有目的地停留

1

华中科技大学本科生毕业设计(论文)开题报告

以进行长时间诊断或某种操作;2)功能过于单一,尚未达到集施药、采样、诊疗与微创手术等多功能于一体的完整医疗平台的目标;3)能量从内部电池获取,难以满足高品质服务与功能扩展的更高要求;4)大多只适于在一种器官环境下运作,不能全范围应用于整个消化道;5)一旦在体内滞留,只能采用有创的方式取出,存在安全隐患。鉴于以上存在的缺陷,发展胶囊内窥镜的关键技术集中于微型化技术、能源供给及低功耗技术、无线驱动控制技术、胶囊定位技术,突破这些技术瓶颈将对抢占国际市场、降低该产品的价格阈值有关键性的影响。

为了克服以上诸多缺陷,更好的服务患者,世界各国的相关研究机构和企业都在致力于主动控制式胶囊内窥镜的研究,目前已经发展了很多种控制方案,主要有形状记忆合金驱动、螺纹旋进、蠕虫式驱动、触角式驱动、电激励驱动、液压驱动及气动驱动等。然而,上述主动控制方式都存在较大的缺陷和安全隐患:蠕虫式胶囊内窥镜内部结构复杂、“风箱效应”会对肠道造成较大程度的损伤;三维旋转磁场控制方法十分复杂,螺旋结构胶囊以转动的方式前进,由于肠道的伸缩动力特性,螺旋结构与肠道产生接触摩擦难以避免,因此,以螺旋运动为主的主动控制方式会对人体肠道造成较大伤害,不利于临床的推广和使用;此外,交变电磁场产生的电磁辐射对人体的潜在伤害无法预知,仍需要进行大量的动物实验和临床验证[2]。

本课题所研究的用于胶囊内窥镜检测的磁导航式运动控制系统:1)不涉及复杂的胶囊内部可动结构,不涉及工频电磁场,安全性好;2)主动控制方式简易,成本低;3)可以显著缩短胶囊内窥镜诊断时间并能够实现胶囊定位以便于医生进行细致观察;4)胶囊运动的能量由外部磁场提供,摆脱内置电源的能量限制。本技术方案有望应用于消化道内窥镜临床检测领域,改变传动推挽式内窥镜检测过程痛苦和被动式胶囊内窥镜耗时低效的现状,推进主动控制式胶囊内窥镜检测的市场化,服务于医疗机构并造福于广大患者。

1.3 国内外基本研究概况

1.3.1 国外研究概况

国外胶囊内窥镜的研究已有成熟的商品和深厚的研究基础。以色列的Given Imaging公司专门致力于胶囊内窥镜的研发,于1999年成功研究出第一个具有临床实用性的胶囊内窥镜。如图1.1所示,其尺寸长30mm、直径11mm,内含的电池可连续工作6-8个小时。经过发展,Given Imaging公司在2000年生产出具有代表性的M2A型胶囊内窥镜,尺寸进一步缩小到11mm×26mm,质量为3.45g,分辨率可达0.1mm,视角为140?。M2A胶囊体内安装了一块CMOS 图像芯片、一块射频芯片和相

2

华中科技大学本科生毕业设计(论文)开题报告

应外围元件、两节氧化银电池、一个磁控开关和一个螺旋型天线。图像芯片可以1:8的比率放大图像。射频芯片数据发送率达到2.7Mbit/s,实现每秒2帧的图片传输。图像发送至体外,通过可戴在手腕上的数据接收器接收后送到图像工作站。整个过程可拍摄5万幅图片存储于工作站。借助专用的图像处理分析软件RAPID,进行数据处理并清晰显示出所拍摄图像。除M2A外,Given Imaging公司还开发了另外两款胶囊内窥镜:Pillcam SB(面向小肠检测,检测时间8小时)和PillCam ESO(面向食管检测,检测时间20分钟),相对M2A对部分参数加以调整。PillCam ESO对反流型食管疾病的病理检测能力很高,敏感性达97%,特异性达100%。

图1.1 Given Imaging 公司产品

美国的Smartpill 公司开发了两种胶囊内窥镜。一种是用于图像检测的胶囊内窥镜。另一种胶囊Smartpill ACT-1(图1.2)用于测量消化道蠕动压力、pH 值和检测时间。其中Smartpill ACT-1 胶囊内含电池可连续使用72个小时。

图1.2 Smartpill胶囊内窥镜

Norika是日本RF SYSTEM实验室开发的第一款产品。普通Norika A3(图1.3)胶囊直径9mm,长23mm。该系统由内窥镜胶囊、外部控制器、嵌入线圈的背心以及图像显示分析终端4大部分构成。其中,外部控制器用于无线遥控肠道图像观察及控制胶囊旋转方向;嵌有线圈的背心用于体内胶囊所需能源的发送及实现胶囊旋转方向的控制。胶囊采用CCD图像芯片,为41万象素,具有很高的图像清晰度,以每秒30

3

华中科技大学本科生毕业设计(论文)开题报告

帧图像数字传输。镜头焦距可控。胶囊采用无线供电,使得供能不再有时间上的限制。采用无线能源传输技术,通过电磁场耦合将能源从体外传递到体内,胶囊内感应线圈感应出电磁场并整流为直流电源存储在电容器中。胶囊通过三组60°间隔的线圈,形成一个三极电机的模式,从而控制胶囊的旋转,以便不同方向观察病灶。镜头四周有2个白色灯和2个近红外线灯,从外部控制其不同亮度的比例,可产生模拟三维图像。且可以网络传输,进行远程会诊。另外,胶囊内部有一个喷药仓和一个取活检仓,均可由外部控制分别打开其阀门,进行对病灶的喷药或伸出微型钛金属针取活检。Norika A3 胶囊的驱动方式也依靠肠道的自身蠕动。

图1.3 Norika A3 胶囊内窥镜

2008 年 RF 系统实验室研制出世界最小的新一代胶囊内窥镜Sayaka,结构见图1.4。Sayaka的直径仅9毫米,长2.3厘米。出于安全性考虑,Sayaka内部并没有搭载电池,靠接收来自体外线圈所发出的电磁感应电产生50 毫瓦电力来驱动其相机、灯光和计算机。当Sayaka在肠道里摄影时,每秒大约可以拍摄30张2兆像素的图像,与此同时,其荧光灯和白色LED灯会照亮肠道壁,实现清晰拍摄。先前的内窥镜将相机放在一端,朝前拍摄,因此只能拍到肠内壁的外围情况,而Sayaka首次将相机面向肠内壁,且能360°旋转,因此能对准肠内壁拍下更加清晰的照片。当其外层胶囊在肠道里行进时,内层的电磁体就会颠倒其极性,从而使内层胶囊和相机每2秒旋转60°,每12秒旋转一周,这就有足够时间能重复拍摄特写镜头。Sayaka拍摄到图像数据不断地通过无线传输到装在患者背心里的天线中,并保存在一张标准的SD存储卡上。医生将此SD存储卡插入电脑,用软件将数千张重复的图像编辑成肠道的平面图,可以将每一张图像可以放大75倍左右,达到1,175兆像素,以便让医生观察其细节特征。Sayaka胶囊式内窥镜吞服大约8个小时后,就会自然排泄出来,累计可拍摄多达87万张照片,整个过程中患者不会有任何感觉。Sayaka胶囊式内窥镜可以任意重复使用。目前,Sayaka已通过美国临床测试。

4

本科毕业论文开题报告 模板 - 图文

本科生毕业设计(论文)开题报告题目:胶囊内窥镜的磁导航式运动检测台设计学号012006007719_姓名王琳_指导教师
推荐度:
点击下载文档文档为doc格式
17x4b7loe39vfqx3dfnl
领取福利

微信扫码领取福利

微信扫码分享