21. (1)Qf?x?是奇函数
?f??x???f?x?在其定义域内恒成立,即loga1?mx1?mx ??loga?x?1x?1?1?m2x2?1?x2?m??1或m?1?舍去??m??1-----------4分
(2)由(1)得f?x??loga设t?x??x?1?a?0且a?1? x?1x?1,任取x1,x2??1,???,且x1?x2 x?1?t?x1??t?x2??2?x2?x1?x1?1x2?1 ??x1?1x2?1(x1?1)(x2?1)x1?1x2?1? x1?1x2?1Qx1?1,x2?1,x1?x2?t?x1??t?x2?即所以当a?1时,logax1?1x?1?loga2即f?x1??f?x2?函数为减函数 x1?1x2?1x1?1x?1?loga2即f?x1??f?x2?函数为增函数------8分 x1?1x2?1所以当0?a?1时,loga(3)当a?1时,f?x??logax?1在1,3上位减函数,要使f?x?在1,3上值域是x?1x?1x?1x?12在1,3上是减函?1,可得?a。令g?x???1??1,???,即logax?1x?1x?1x?1??????数。所以g?x???1???22??2?3。所以a?2?3 ,???所以a?1?3?13?1?
aaa]内为减函数. 22. 1)由性质,可知函数g(x)?2x??2(x?2)(a?0)在(0,2xxaa],故?1 得a?2 依题意,(0,1]?(0,22∴a的取值范围是[2,??). (2)设P(x1,y1),Q(x2,y2) ∵MP?MQ ∴kMPgkMQ??1
(y1?b)(y2?b)??1 即x1x2?(y1?b)(y2?b)?0
x1x2又y1?kx1,y2?kx2
∴
22∴x1x2?(kx1?b)(kx2?b)?0 即(1?k)x1x2?kb(x1?x2)?b?0()
由???y?kx22得(1?k)x?2(1?k)x?1?0
22??x?y?2x?2y?1?022由??[2(1?k)]?4(1?k)?8k?0 得k?0 ①
2(1?k)1, 代入()中得 xx?12221?k1?k12(1?k)2(1?k2)?kb?b?0 221?k1?k2k(1?k)1即. ?b?1?k2b111由性质知,b?在b?[1,??)时为增,故b??1??2.
bb12k(1?k)∴?2,得k?1 ②
1?k2由①②得k?1.
且x1?x2?
数学卷·2017届辽宁省沈阳二中高一上学期期末考试(2015.01)



