好文档 - 专业文书写作范文服务资料分享网站

2013年全国初中数学竞赛九年级预赛试题及答案最新 

天下 分享 时间: 加入收藏 我要投稿 点赞

菁优网

www.jyeoo.com 故选A. 点评: 本题考查了圆的面积公式:S=πR.也考查了不规则图形的面积的求法,即转化为规则的几何图形的面积的和或差来解决. 25.(5分)设a,b,c是△ABC的三边长,二次函数在x=1时取最小值,则△ABC

是( ) A. 等腰三角形 B.锐 角三角形 C. 钝角三角形 D.直 角三角形 考点: 二次函数的最值;勾股定理的逆定理. 专题: 计算题. 分析: 根据二次函数在对称轴时取得最小值,然后根据题意列出方程组即可求出答案; 解答: 解:由题意可得, 即, 222所以,,因此a+c=b, 点评: 所以△ABC是直角三角形, 故选D. 本题考查了二次函数的最值,难度不大,关键是掌握二次函数在二次项系数大于0时,在对称轴处取得最小值. 6.(5分)计算机中的堆栈是一些连续的存储单元,在每个堆栈中数据的存入、取出按照“先进后出’’的原则.如图,堆栈(1)的2个连续存储单元已依次存入数据b,a,取出数据的顺序是a,b;堆栈(2)的3个连续存储单元已依次存人数据e,d,c,取出数据的顺序则是c,d,e,现在要从这两个堆栈中取出这5个数据(每次取出1个数据),则不同顺序的取法的种数有( )

A. 5种 考点:

B.6 种 加法原理与乘法原理. C. 10种 D.1 2种 页 (共 6 页) 九年级预赛试卷第 6

菁优网

www.jyeoo.com 专题: 计算题. 分析: 此题实际可以理解为a、b、c、d、e这五个字母组成的排列中,不论怎样排列,a、b先后顺序和c、d、e排列的顺序不变,这样排列开头的字母只能是a或c,由此解答问题即可. 解答: 解:先取出堆栈(1)的数据首次取出的只能是a,可以有下列情况, abcde,acbde,acdbe,acdeb四种情况; 先取出堆栈(2)的数据首次取出的只能是c,可以有下列情况, cdeab,cdabe,cdaeb,cabde,cadbe,cadeb六种情况; 综上所知,共10种取法. 故选C. 点评: 解决此题的关键是要搞清a、b先后顺序和c、d、e排列的顺序不变,从而运用一一列举的方法解答即可. 二.填空题(共3小题,满分15分,每小题5分)

2

7.(5分)设方程x﹣|2x﹣1|﹣4=0,则满足该方程的所有根之和为 _________ . 考点: 解一元二次方程-因式分解法;绝对值;解一元二次方程-公式法. 专题: 因式分解. 分析: 因为题目中带有绝对值符号,所以必须分两种情况进行讨论,去掉绝对值符号,得到两个一元二次方程,求出方程的根,不在讨论范围内的根要舍去. 解答: 2解:当2x﹣1≥0时,即x≥,原方程化为:x﹣2x﹣3=0,(x﹣3)(x+1)=0, x1=3,x2=﹣1,∵﹣1<∴x2=﹣1(舍去) ∴x=3 当2x﹣1<0,即x<时,原方程化为:x+2x﹣5=0,(x+1)=6, x+1=±∵﹣1+,x1=﹣1+,x2=﹣1﹣ 22>,∴x1=﹣1+(舍去) 点评: ∴x=﹣1﹣. 则3+(﹣1﹣)=2﹣. 故答案是:2﹣ 本题考查的是解一元二次方程,由于带有绝对值符号,必须对题目进行讨论,对不在讨论范围内的根要舍去. 8.(5分)(人教版考生做)如图,在平行四边形ABCD中,过A、B、C三点的圆交AD于E,且与CD相切.若AB=4,BE=5,则DE的长为 _________ .

考点: 分析: 解答: 切割线定理;平行四边形的性质;圆周角定理;弦切角定理. 连接CE,根据圆周角定理易知:∠BAE=∠BEC+∠EBC,而∠DCB=∠DCE+∠BCE,这两个等式中,由弦切角定理知:∠DCE=∠EBC;再由平行四边形的性质知:∠DCB=∠EAB,因此∠BEC=∠BCE,即可得BC=BE=5,即AD=5,进而可由切割线定理求DE的长. 解:连接CE; ∵, 页 (共 7 页) 九年级预赛试卷第 7

菁优网

www.jyeoo.com ∴∠BAE=∠EBC+∠BEC; ∵∠DCB=∠DCE+∠BCE, 由弦切角定理知:∠DCE=∠EBC, 由平行四边形的性质知:∠DCB=∠BAE, ∴∠BEC=∠BCE,即BC=BE=5, ∴AD=5; 由切割线定理知:DE=DC÷DA=故选D. 2, 点评: 此题主要考查了平行四边形的性质、切割线定理、弦切角定理以及圆周角定理的综合应用,能够判断出△BEC是等腰三角形,是解决此题的关键. 8.(5分)(北师大版考生做)如图B,等边三角形ABC中,D、E分别为AB、BC边上的点,AD=BE,AE与CD交于点F,AG⊥CD于点G,则

FG的值为 _________ . AF

考点: 分析: 解答: 特殊角的三角函数值;全等三角形的判定与性质;等边三角形的性质. 首先证明△CAD≌△ABE,得出∠ACD=∠BAE,证明∠AFG=60°. 解:在△CAD与△ABE中, AC=AB,∠CAD=∠ABE=60°,AD=BE, ∴△CAD≌△ABE. ∴∠ACD=∠BAE. ∵∠BAE+∠CAE=60°, ∴∠ACD+∠CAE=60°. ∴∠AFG=∠ACD+∠CAE=60°. 在直角△AFG中, ∵sin∠FAG=∴点评: FG, AFFG1=. AF2本题主要考查了全等三角形的判定、性质,等边三角形、三角形的外角的性质,特殊角的三角函数值及三角函数的定义.综合性强,有一定难度. 9.(5分)已知a﹣a﹣1=0,且 考点:

2

?2,则x= . 3解分式方程. 页 (共 8 页) 九年级预赛试卷第 8

菁优网

www.jyeoo.com 专题: 计算题. 2234分析: 本题可先根据a﹣a﹣1=0,得出a,a,a的值,然后将等式化简求解. 2解答: 解:由题意可得a﹣a﹣1=0 a=a+1 42222a=(a)=(a+1)=a+2a+1=a+1+2a+1=3a+2 322a=a?a=a(a+1)=a+a=a+1+a=2a+1 =?22 32 3=?点评: x=4. 2本要先根据给出的a﹣a﹣1=0得出对等式化简有用的一些信息,然后再将方程化简求解.本题计算过程较长,比较复杂. 10.(5分)甲乙两人到特价商店购买商品,已知两人购买商品的件数相等,且每件商品的单价只有8元和9元,若两人购买商品一共花费了172元,则其中单价为9元的商品有 12 件. 考点: 二元一次方程组的应用. 分析: 设共购商品2x件,9元的商品a件,根据两人购买商品的件数相等,且两人购买商品一共花费了172元,可列出方程,求解即可. 解答: 解:设共购商品2x件,9元的商品a件,则8元商品为(2x﹣a)件,根据题意得: 8(2x﹣a)+9a=172, 解得a=172﹣16x, ∵依题意2x≥a,且a=172﹣16x≥0,x为大于0的自然数, ∴可得9.6≤x≤10.75, ∴x=10,则a=12. 所以9元的商品12件,故答案填12. 点评: 本题主要考查了二元一次方程的应用及不等式组的解法.解题关键是弄清题意,找到合适的等量关系,列出方程.本题解题的关键在于按生活实际讨论未知数的取值范围. 11.(5分)如图,电线杆AB直立于地面上,它的影子恰好照在土坡的坡面CD和地面BC上,若CD与地面成45°,

∠A=60°,CD=4m,,则电线杆AB的长为 _________ 米.

考点: 专题: 分析: 解答: 解直角三角形的应用-坡度坡角问题. 应用题. 延长AD交地面于E,作DF⊥BE于F,求出BE=BC+CF+FE=解:延长AD交地面于E,作DF⊥BE于F. ∵∠DCF=45°.CD=4. ∴CF=DF=. 由题意知AB⊥BC. ∴∠EDF=∠A=60°. ,根据正切求出AB的值即可. 页 (共 9 页) 九年级预赛试卷第 9

菁优网

www.jyeoo.com ∴∠DEF=30° ∴EF=. ∴BE=BC+CF+FE=. 在Rt△ABE中,∠E=30°. ∴AB=BEtan30°=答:电线杆AB的长为6米. (m). 点评:

12.(5分)若实数x,y,使得

这四个数中的三个相同的数值,则所有具有这样性质的数对(x,y)

此题主要是运用所学的解直角三角形的知识解决实际生活中的问题.作辅助线、求出BE=BC+CF+FE是解题的关键. 为 _________ . 考点: 实数的运算. 专题: 分类讨论. 分析: 此题可以先根据分母不为0确定x+y与x﹣y不相等,再分类讨论即可. 解答: 解:因为有意义,所以y不为0,故x+y和x﹣y不等 (1)x+y=xy=解得y=﹣1,x=, (2)x﹣y=xy=解得y=﹣1,x=﹣, 答案为(﹣1,)(﹣1,﹣) 点评: 解答本题的关键是确定x+y与x﹣y不相等,再进行分类讨论. 三.解答题(共4小题,满分80分,每小题20分) 13.(20分)已知:(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式. 求证:a=b=c 考点: 完全平方式. 专题: 计算题. 分析: 2先把原式展开,合并,由于它是完全平方式,故有3x+2(a+b+c)x+(ab+bc+ac)=[x+(a+b+c)],2解答: 化简有ab+bc+ac=a+b+c,那么就有(a﹣b)+(b﹣c)+(c﹣a)=0,三个非负数的和等于0,则每一个非负数等于0,故可求a=b=c. 2解:原式=3x+2(a+b+c)x+(ab+bc+ac), ∵(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式, ∴3x+2(a+b+c)x+(ab+bc+ac)=[22222222222x+(a+b+c)], 2∴ab+bc+ac=(a+b+c)=(a+b+c+2ab+2ac+2bc), ∴ab+bc+ac=a+b+c,

页 (共 10 页) 九年级预赛试卷第 10

222

2013年全国初中数学竞赛九年级预赛试题及答案最新 

菁优网www.jyeoo.com故选A.点评:本题考查了圆的面积公式:S=πR.也考查了不规则图形的面积的求法,即转化为规则的几何图形的面积的和或差来解决.25.(5分)设a,b,c是△ABC的三边长,二次函数在x=1时取最小值,则△ABC是()A.等腰三角形B.锐角三角形C.钝角三角形D.直角三角形考点:二次函数的最
推荐度:
点击下载文档文档为doc格式
1716814spa4mg6283wfy
领取福利

微信扫码领取福利

微信扫码分享