《现代控制理论参考答案》
第一章答案
1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。
U(s)+-K1Kps?K1+-Kps?K1s+-1J1sKbJ2s2?(s)Kns图1-27系统方块结构图
解:系统的模拟结构图如下:
Kp+U(s)-K1Kp+-K1Kp?x6+-K1x5++?+-1J1?x4x3KbJ2?x2??(s)x1Kn?图1-30双输入--双输出系统模拟结构图
系统的状态方程如下:
1
x1?x2x2????Kbx3J2KpJ1x3?KpKn1x4?x5?x6J1J1J1
x3???x4?x3x5??K1x3?K1X6x6????K1KKx1?1x6?1uKpKpKp令?(s)?y,则y?x1
所以,系统的状态空间表达式及输出方程表达式为
?????1??x???x????2???x3????????x4???????x5?????????x6????00000K1Kp10Kb0J2Kp0?J10100?K1000?KnJ1000001J0000???0?0??x1???0???x??Kp??2??0??x?J1??3???0?u?x4??0????0???xK1??5??K1???K1??x6???K????p??
Kp???x1??x??2??x3?y??100000????x4??x5?????x6??
1-2有电路如图1-28所示。以电压u(t)为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻R2上的电压作为输出量的输出方程。
R1L1L2i1CUi2---------Uc---------R2图1-28 电路图
2
解:由图,令i1?x1,i2?x2,uc?x3,输出量y?R2x2
R1x1?L1x1?x3?u有电路原理可知:L2x2?R2x2?x3??x1??x2??x3?????R111x1?x3?uL1L1L1R21x2?x3L2L2
既得
x1?x2?Cx3?11x1?x2CCy?R2x2写成矢量矩阵形式为:
?R1????L1??x?1。?x???02?。???x3??1???????C。0?R2L21?C?1??1??L1?x????1L1????1?x2???0?u??L2???x3???0??? 0?????y??0R2
?x1??0??x2????x3??1-4 两输入u1,u2,两输出y1,y2的系统,其模拟结构图如图1-30所示,试求其状态空间表达式和传递函数阵。
u1b1+---??y1a1a5a6?++a21u2b2+---?a3y2
a4图1-30双输入--双输出系统模拟结构图
解:系统的状态空间表达式如下所示:
??0?x1??x???a?2????2?x??1?3????4??x?01?a10?a5000?a40??x1??0?x??b?a6???2???11??x3??0?????a3??x4??00?0??u0??b2??x1??x?y??1010??2??x3????x4?
3
?1?s?as?a1(sI?A)??2??10?a5?000sa40?a6?? ?1??a3?00sa40?a6???1??a3??1?1?s?as?a1?1Wux(s)?(sI?A)B??2??10?a5?0?00??b0??1? ?00???0b2??00sa40?a6???1??a3??1?1?s?as?a1?1Wuy(s)?C(sI?A)B??1010??2??10?a5?0
1-5系统的动态特性由下列微分方程描述
?00??b0??1? ?00???0b2??(2)y?5y?7y?3y?u?3u?2u
列写其相应的状态空间表达式,并画出相应的模拟结构图。 解:令x1?y,x2?y,x3?y,则有
...?......?。?1?10??x1??0??0?x。??x???0?u?x???0012??2????。???x3????3?7?5????x3????1?? ?????x1??y??231??x?2???x3??相应的模拟结构图如下:
13u+---?5x3?x2?x12++y73
1-6 (2)已知系统传递函数W(s)?6(s?1),试求出系统的约旦标准型的实现,并画出相应的模拟结构图
s(s?2)(s?3)24
1016(s?1)?43?3?3 解:W(s)???s(s?2)(s?3)2(s?3)2s?3s?2s??0?x??311??x??0?30??2?????x?00?23?????00?x4??00??x1??0?0??x2??1???????u0??x3??1??????0??x4??1?
x?1???101??x2??y???4?333????x3????x4?1-7 给定下列状态空间表达式
?10??x1??0??x?01??x????2?30??x???1?u?2?????2?????3??x????11?3????x3????2??‘
?x1?y??001??x2?????x3??(1) 画出其模拟结构图
(2) 求系统的传递函数 解:
0??s?1?0? (2)W(s)?(sI?A)?2s?3????1?1s?3??sI?A?s(s?3)2?2(s?3)?(s?3)(s?2)(s?1)
??s?3?2?s?30??1(sI?A)?1??2(s?3)s(s?3)0?
(s?3)(s?2)(s?1)???s?5s?1(s?1)(s?2)?????s?3?2??0?s?30????1Wux(s)?(sI?A)?1B??2(s?3)s(s?3)01????(s?3)(s?2)(s?1)???s?1(s?1)(s?2)???s?5??2??(s?3)?1?s(s?3)???(s?3)(s?2)(s?1)???(2s?1)(s?3)??
5