(2)知识拓展:
如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.
2
9. 如图,已知点A(-4,8)和点B(2,n)在抛物线y=ax上.
(1)求a的值及点B关于x轴对称点P的坐标,并在x轴上找一点Q,使得AQ+QB最短,求出点Q的坐标;
2
(2)平移抛物线y=ax,记平移后点A的对应点为A′,点B的对应点为B′,点C(-2,0)和点D(-4,0)是x轴上的两个定点.
① 当抛物线向左平移到某个位置时,A′C+CB′最短,求此时抛物线的函数解析式;
② 当抛物线向左或向右平移时,是否存在某个位置,使四边形A′B′CD的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.
备用图
10. 已知:如图,AB是⊙O的直径,在AB的两侧有定点C和动点P,AB=5,AC=3.点P在A,B重合),CP交AB于点D,过点C作CP的垂线,与PB的延长线交于点Q. (1)求∠P的正切值;
(2)当CP⊥AB时,求CD和CQ的长;
(3)当点P运动到什么位置时,CQ取到最大值?求此时CQ的长.
上运动(点P不与
11.先阅读材料,再解答问题:
小明同学在学习与圆有关的角时了解到:在同圆或等圆中,同弧(或等弧)所对的圆周角相等.如图,点A、
B、C、D均为⊙O上的点,则有∠C=∠D.小明还发现,若点E在⊙O外,且与点D在直线AB同侧,则有∠D>∠E.
(1) 如图1,在平面直角坐标系xOy中,点A的坐标为(0,7),点B的坐标为(0,3), 点C的坐标为(3,0).
请你参考小明得出的结论,解答下列问题:
①在图1中作出△ABC的外接圆(保留必要的作图痕迹,不写作法);
②若在x轴的正半轴上有一点D,且∠ACB =∠ADB,则点D的坐标为 ;
(2) 如图2,在平面直角坐标系xOy中,点A的坐标为(0,m),点B的坐标为(0,n),
其中m>n>0.点P为x轴正半轴上的一个动点,当∠APB达到最大时,直接写出此时点P的坐标.
12. (8分)(2016?北京)在平面直角坐标系xOy中,点P的坐标为 ?x1,y1?,点Q的坐标为 ?x2,y2?,且
x1?x2,y1?y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的
“相关矩形”,如图为点P,Q的“相关矩形”示意图. (1)已知点A的坐标为(1,0),
①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;
②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;
(2)⊙O的半径为2,点M的坐标为(m,3),若在⊙O上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围.