LED散热问题的解决方案
白光LED仍旧存在着发光均匀性不佳、封闭材料的寿命不长等问题,无法发挥白光优点。但就需求层面来看,不仅一般的照明用途,随着手机、合适开发稳定白光
LED被期待的应用
LCD TV、汽车、医疗等的广泛应用,使得最
LED的发光效率,目前有两大方向,一
LED的技术研究成果就广泛的被关注。改善白光
是提高LED芯片的面积,藉此增加发光量。二是把几个小型芯片一起封装在同一个模块下。藉由提高芯片面积来增加发光量
虽然,将LED芯片的面积予以大型化,藉此能够获得高得多的亮度,但因过大的面积,在应用
过程和结果上也会出现适得其反的现象。所以,针对这样的问题,部分覆晶的构造,在芯片表面进行改良,来达到光层很接近封装的附近,
LED业者就根据电极构造的改进和
LED覆晶封装的部分,由于发
50lm/W的发光效率。例如在白光
发光层的光向外部散出时,电极不会被遮蔽,但缺点就是所产生的热不容易消散。
并非进行芯片表面改善后,再加上增加芯片面积就绝对可以迅速提升亮度,因为当光从芯片内部
向外扩散射时,芯片中这些改善的部分无法进行反射,所以在取光上会受到一点限制,根据计算,最佳发挥光效率的LED芯片尺寸是在7mm2左右。利用封装数个小面积片相比,利用小功率
LED芯片快速提高发光效率和大面积
LED芯就
LED芯片封装成同一个模块,这样是能够较快达到高亮度的要求,例如,Citizen
将8个小型LED封装在一起,让模块的发光效率达到了的一些疑虑,因为是将多颗
60lm/W,堪称是业界的首例。但这样的做法也引发
LED芯片间的短
LED封装在同一个模块上,必须置入一些绝缘材料,以免造成
路情况发生,如此一来就会增加了不少的成本。
对此Citizen
的解释是:“对于成本的影响幅度是相当小的,因为相较于整体的成本比例,这些
绝缘材料仅不到百分之一,并可以利用现有的材料来做绝缘应用,这些绝缘材料不需要重新开发,也不需要增加新的设备来因应。”虽然
Citizen
的解释理论上是合理的,但是,对于无经验的业者来说,这就是
一项挑战,因为无论在良率、研发、生产工程上都是需要予以克服的。还有其它方式可达到提高发光效率的目标,许多业者发现,在
LED蓝宝石基板上制作出凹凸不平坦的结构,这样或许可以提高光输出量,所
Texture
或Photonics结晶的架构。例如德国的
OSRAM就是以这样的架构
以,有逐渐朝向在芯片表面建立
开发出“Thin GaN”高亮度LED。原理是在InGaN层上形成金属膜,之后再剥离蓝宝石,这样,金属膜就会产生映像的效果而获得更多的光线取出,根据
OSRAM的资料显示,这样的结构可以获得
75%的光取出效
率。除了芯片的光取出方面需要做努力外,因为期望能够获得更高的光效率,在封装的部分也是必须做一些改善。事实上,每多增加一道的工程都会对光取出效率带来一些影响,不过,这并不代表着,因为封装的制程就一定会增加更高的光损失,就像日本效率,这样的结构是将
LED所射出的光线,利用
OMROM所开发的平面光源技术,就能够大幅度的提升光取出LENS光学系统以及反射光学系统来做控制的,所以
OMROM
称之为“Double reflection ”。利用这样的结构,可将传统炮弹型封装等的
更进一步的是,在表面所形成的
LED所造成的光损失,针对Mesh上进行加工,而形成双层的
封装的广角度反射来获得更高的光效率,
反射效果,这样的方式可以得到不错的光取出效率控制的。因为这样特殊的设计,利用反射效果达到高光取出效率的LED,主要的用途是针对
LCD TV背光所应用的。
封装材料和荧光材料的重要性增加
如果期望用来作为
LCD TV背光应用的话,那幺需要克服的问题就会更多了。因为
LCD TV的连续
使用时间都是长达数个小时,甚至10几个小时,所以,由于这样长时间的使用情况下,拿来作为背光的白
光LED就必须拥有不会因为连续使用而产生亮度衰减的情况。目前已发表的高功率的白光
LED,它的发光功率是一个低功率白光
LED亮度的数十倍,所以期望利用高功
例如,白光LED
率白光LED来代替荧光灯作为照明设备的话,长时间连续使用
有一个必须克服的困难就是亮度递减的情况。
1W的情况下,会造成连续使用后半段时间的亮度逐渐降低的现象,不是只有高功率白光
LED也会存在这样的问题,只不过是因为低功率白光应用的产品不
使用的电流愈大,所获得的亮度就愈高,这是一般对于
LED
LED才会出现这样的情况,低功率白光
同,所以,并不会因此特别突显出这样的困扰。
能够达到高亮度的观念,不过,因为所使用的电流增加,因此封装材料是否能够承受这样长时间的因为电流所产生的热,也因为这样的连续使用,往往封装材料的热抵抗会降到高功率LED的发热量是低功率
10k/w以下。
LED的数十倍,因此,会出现随着温度上升,而出现发光功率降低的问题,
所以在能够抗热性高封装材料的开发上,相对显的非常重要。
或许在20~30lm/W以下的LED,这些问题都不明显,但是,一旦面临候,就需要想办法解决的。热效应所带来的影响,绝对不会仅仅只有
60lm/w以上的高发光功率
LED的时
LED本身,而是会对整个应用产品带
来困扰,所以,LED如果能够在这一方面获得解决的话,那幺,也可以减轻应用产品本身的散热负担。因此,在面对不断提高电流情况的同时,如何增加抗热能力,也是现阶段的急待被克服的问题。从各方面来看,除了材料本身的问题外,还包括从芯片到封装材料间的抗热性、导热结构及封装材料到热性、导热结构和
PCB板间的抗
PCB板的散热结构等,这些都需要作整体性的考量。例如,即使能够解决从芯片到封装
PCB板的散热效果不好的话,同样也是造成
LED芯片温度的上升,出现发
材料间的抗热性,但因从封装到
光效率下降的现象。所以,就像是松下就为了解决这样的问题,从2005年开始,便把包括圆形、线形、面
PCB板间散热中断的问题。但并
PCB板
型的白光LED,与PCB基板设计成一体,来克服可能因为出现在从封装到
非所有的业者都像松下一样,因为各业者的策略关系,有的业者以基板设计的简便为目标,只针对的散热结构进行改良。还有相当多的业者,因为本身不生产还是不够的,所以需要选择散热性良好的白光
LED,所以只能在
PCB板做一些研发,但仅此
LED封装中的
LED。能让PCB板上用的金属材料,能与白光
散热槽紧密连接,达到散热的能力。这样看起来好象只是因为期望达到散热,而把简单的一件事情予以复杂化,到底这样是不是符合成本和进步的概念?以今天的应用层面来说,很难做一个判断,不过,是有一些业者正朝向这方面作考量,例如
Citizen
在2004年所发表的产品,就是能够从封装上厚度为
2~3mm 的
散热槽向外散热,提供应用业者能够因为使用了具有散热槽的高功率白光以发挥。
封装材料的改变使白光
LED,能让PCB板的散热设计得
LED寿命达原先的4倍。发热的问题不是只会对亮度表现带来影响,
LED不断的开发出封装材料来因应持续提高中的
同时也会对LEDLED亮度所产生
本身的寿命出现挑战,所以在这一部份,的影响。
过去用来作为封装材料的环氧树脂,耐热性比较差,可能会出现在LED芯片本身的寿命到达前,环氧
树脂就已经出现变色的情况,因此,为了提高散热性,必须让更多的电流获得释放。除此之外,不仅因为热现象会对环氧树脂产生影响,甚至短波长也会对环氧树脂造成一些问题,这是因为环氧树脂相当容易被白光LED中的短波长光线破坏,即使低功率的白光
LED就已经会造成环氧树脂的破坏,更何况高功率的白
5,000小
光LED所含的短波长的光线更多,恶化自然也加速,甚至有些产品在连续点亮后的使用寿命不到时。所以,与其不断的克服因为旧有封装材料-环氧树脂所带来的变色困扰,不如朝向开发新一代的封装材料的选择。目前在解决寿命这一方面的问题,许多
LED封装业者都朝向放弃环氧树脂,而改用了硅树脂
LED的寿命。就资料上来看,
150~180度的高温,
和陶瓷等作为封装的材料。根据统计,因为改变了封装材料,事实上可以提高代替环氧树脂的封装材料-硅树脂,就具有较高的耐热性,根据试验,即使是在摄氏
也不会变色的现象,看起来似乎是一个不错的封装材料。硅树脂能够分散蓝色和近紫外光,与环氧树脂相比,硅树脂可以抑制材料因为电流和短波长光线所带来的劣化现象,缓和光穿透率下降的速度。以目前的应用来看,几乎所有的高功率白光
LED产品都已经改用硅树脂作为封装的材料,例如,相对于波长
400~
450nm的光,环氧树脂约在个位的数百分比左右,但硅树脂对样的落差,使得在抗短波长方面,硅树脂有着较出色的表现。就寿命表现度而言,硅树脂可以达到延长白光
400~450nm的光线吸收却不到百分之一,这
LED使用寿命的目标,甚至可以达到4万小时以上的使用寿
命。但是不是真的适合用来做照明的应用还有待研究,因为硅树脂是具有弹性的柔软材料,所以在封装的过程中,需要特别注意应用的方式,从而设计出最适当的应用技术。
对于未来应用方面,提高白光LED的光输出效率将会是决胜的关键点。白光LED的生产技术,从过去GaN材料,开发出白光
的蓝色LED和黄色YAG荧光体的组合,开发出仿真白光,到利用三色混合或者使用
LED,对于应用来说,已经可以看的出将会朝向更广泛的方向扩展。另外,白光不错的发展,日本LED照明推进协会的目标是,期望能够在数年内,100lm/w发光效率就能够实际上商业化应用。
LED的发光效率,已经有了
2009年达到100lm/w的发光效率,所以预计在
日亚化学积极开发白光半导体雷射,在期望LED达到色纯度较高的白光及高亮度的要求下,各业者不
断的从每一领域加以改善,而达到这一目标,但在进展速度上,看起来仍旧相当的缓慢。因此部分业者开始考虑采用其它的技术,来实现目前业界对于类似白光
LED的光亮度要求。在高亮度蓝、白光
LED领域的
日亚化学,便将一部份的研发方向,朝向开发白光雷射做努力。
日亚化学利用与白光
来说,辉度已经能够达到
LED相同的GaN系材料制作半导体雷射,开发出了白光光源,以目前的表现
LED如果期望达到这个辉度值是相当困难的,即使增
10cd/mm左右,现有的白光
加电流期望亮度增加,但这样将会使得接合点的温度上升,所带来的结果不仅会使整个发光效率降低外,还会浪费相当多的电量。
日亚化学所开发的白光半导体雷射,在芯片端不再使用荧光材料,而是将发光部分和白光产生的
部分分开处理,利用
200mw的蓝紫色半导体雷射,发出
405nm的波长光线,把蓝色或蓝紫色半导体雷射与
光纤的面进行连接,让白光从涂了荧光材料光纤的另一面发射出来,而所产生出来的白光直径仅有,这个面积只有相同光量白光
LED的1/20,所需的功耗不到,所以,在散热部分也不需要太多考虑。
3,000小
虽然看起来在特性的方面是相当的不错,不过还是有一些缺点的,在使用寿命上,只有
时左右,价格太贵。虽然价格的问题花一点时间就可以下降一些,但是以现在降到3,000甚至300日元,可能需要
10年以上的时间。
30万日圆的水准来看的,要