好文档 - 专业文书写作范文服务资料分享网站

常用的巧算和速算方法 - 图文

天下 分享 时间: 加入收藏 我要投稿 点赞

当除数(两位数)的10倍的一半,与被除数相等(或相近)时,可以直接试商“5”。如70÷14=5,125÷25=5。

当除数一次不能除尽被除数的时候,有些可以用“无除半商五”。“无除”指被除数前两位不够除,“半商五”指若被除数的前两位恰好等于(或接近)除数的一半时,则可直接商“ 5”。例如1248÷24=52,2385÷45=53 (2)同头无除商八、九。

“同头”指被除数和除数最高位上的数字相同。“无除”仍指被除数前两位不够除。这时,商定在被除数高位数起的第三位上面,再直接商8或商9。 5742÷58=99,4176÷48=87。 (3)用“商九法”试商。

当被除数的前两位数字临时组成的数小于除数,且前三位数字临时组成的数与除数之和,大于或等于除数的10倍时,可以一次定商为“9”。

一般地说,假如被除数为m,除数为n,只有当9n≤m<10n时,n除m的商才是9。同样地,10n≤m+n<11n。这就是我们上述做法的根据。 例如4508÷49=92,6480÷72=90。 (4)用差数试商。

当除数是11、12、13…………18和19,被除数前两位又不够除的时候,可以用“差数试商法”,即根据被除数前两位临时组成的数与除数的差来试商的方法。若差数是1或2,则初商为9;差数是3或4,则初商为8;差数是5或6,则初商为7;差数是7或8,则初商是6;差数是9时,则初商为5。若不准确,只要调小1就行了。例如1476÷18=82(18与14差4,初商为8,经试除,商8正确);1278÷17=75(17与12的差为5,初商为7,经试除,商7正确)。 为了便于记忆,我们可将它编成下面的口诀: 差一差二商个九,差三差四八当头; 差五差六初商七,差七差八先商六;

差数是九五上阵,试商快速无忧愁。

【恒等变形】恒等变形是一种重要的思想和方法,也是一种重要的解题技巧。它利用我们学过的知识,去进行有目的的数学变形,常常能使题目很快地获得解答。例如

(1)1832+68=(1832-32)+(68+32) =1800+100 =1900

(2)359.7-9.9=(359.7+0.1)-(9.9+O.1) =359.8-10 =349.8

【拆数加减】在分数加减法运算中,把一个分数拆成两个分数相减或相加,使隐含的数量关系明朗化,并抵消其中的一些分数,往往可大大地简化运算。 (1)拆成两个分数相减。例如

又如

(2)拆成两个分数相加。例如

又如

【同分子分数加减】同分子分数的加减法,有以下的计算规律:

分子相同,分母互质的两个分数相加(减)时,它们的结果是用原分母的积作分母,用原分母的和(或差)乘以这相同的分子所得的积作分子。

分子相同,分母不是互质数的两个分数相加减,也可按上述规律计算,只是最后需要注意把得数约简为既约(最简)分数。 例如

(注意:分数减法要用减数的原分母减去被减数的原分母。)

由上面的规律还可以推出,当分子都是1,分母是连续的两个自然数时,

关系,我们也可以简化运算过程。例如

【先借后还】“先借后还”是一条重要的数学解题思想和解题技巧。例如

做这道题,按先通分后相加的一般办法,势必影响解题速度。现在从“凑整”着眼,采用“先借后还”的办法,很快就将题目解答出来了。

【个数折半】下面的几种情况下,可以运用“个数折半”的方法,巧妙地计算出题目的得数。

(1)分母相同的所有真分数相加。求分母相同的所有真分数的和,可采用“个数折半法”,即用这些分数的个数除以2,就能得出结果。

这一方法,也可以叙述为分母相同的所有真分数相加,只要用最后一个分数的分子除以2,就能得出结果。

(2)分母为偶数,分子为奇数的所有同分母的真分数相加,也可用“个数折半法”求得数。比方

常用的巧算和速算方法 - 图文

当除数(两位数)的10倍的一半,与被除数相等(或相近)时,可以直接试商“5”。如70÷14=5,125÷25=5。当除数一次不能除尽被除数的时候,有些可以用“无除半商五”。“无除”指被除数前两位不够除,“半商五”指若被除数的前两位恰好等于(或接近)除数的一半时,则可直接商“5”。例如1248÷24=52,2385÷45=53(2)同头无除商八、九。<
推荐度:
点击下载文档文档为doc格式
164hx23xwm17c193745y
领取福利

微信扫码领取福利

微信扫码分享