好文档 - 专业文书写作范文服务资料分享网站

考研数学有哪些复习技巧指导

天下 分享 时间: 加入收藏 我要投稿 点赞

考研数学有哪些复习技巧指导

考研数学复习技巧 近年来考研数学试题难度比较大,平均分比较低,而高等数学又是考研数学的重中之重,如何能让考研数学的高分,已经成为广大考研备考生普遍关心的重要问题。

高等数学想要拿高分,首先是按照大纲对数学的基本概念、基本方法和基本定理准确把握。如果对数学中的基本概念、方法和原理不清楚,解题时肯定会碰到各种各样的问题,容易丢失一些基本分。其次是提高解题能力,尤其是解综合性试题和应用题能力。复习时考生要搞清有关知识的纵向、横向联系,形成一个有机的体系。解应用题一般是在理解题意的基础上建立数学模型,这种题目现在每年都考,考生需要平时进行强化训练。最后是重视历年试卷。高等数学部分试题重复率还是比较高的,历年试卷更能反映出考研数学的出题思路和出题重点,通过对考研试题的类型、特点、思路进行系统的归纳总结,并做一定数量习题,才能提高复习效率和解题能力。要想在数学考试中取得好成绩,一定要做一定数量的题目,通过做题才能更准确、更熟练的一些公式、结论的用法,并且题目做的多了,才有可能在考场上迅速形成做题思路。另外,题目做的多了,才有可能提高解题速率和正确率。选择题和填空题在数学考卷中所占的比重很大,这些题目的解答往往会“一失足成千古恨”,稍不留神,一步做错就全军覆没。不能说只要考场上认真,仔细地做题就不会有“会做但做错”的情况出现,其实有些看似由于粗心引起的错误是由于考生之前没有碰到过这种错误,考生时大脑中意识不到要注意这些问题,所以这种错误是不能仅仅认真、仔细就可以避免得了的。

应此我们在复习高等数学的时候要注意:首先,熟悉和掌握教材中的基本概念和定理,清楚各个考点,形成一个知识体系。有了这个基础,整个数学的复习都会比较轻松,并取得事半功倍的效果。然后是整理数学班的笔记,熟悉掌握笔记中所讲的出题点和各种解题规律,这样就可以进入做题状态了。就我自己来说,由于时间的限制,不可能从量上进行突破,因此就必须提高做题质量。每做完一题后,就要总结其所覆盖的知识面并且归纳其所属题型,做到举一反三。以后碰到类似的题目,就跳过不做了。这样不仅可以做到熟练运用相关知识点和解题方法,还可以少做大量无用功,节省很多复习时间,从而大大提高了复习效率。

此外,研究真题是各科复习过程中不可或缺的一个环节,数学自然也不例外。数学真题的复习要按章节进行,就是找出一份已经分好类的历年真题集。这样,在做真题的过程中,就可以做到以一年代替历年,即在历年考试中大多数的题型都是类似地重复地出现,因此没必要花太多时间在每年类似的题上。而且,在研究完历年真题后,自己可以很清楚历年考试出题的重点和难点,使冲刺阶段的总结性复习更有针对性和目的性。

考研数学概率论基础复习知识点 第一章 随机事件和概率

重点内容是:事件的关系:包含,相等,互斥,对立,完全事件组,独立;事件的运算:并,交,差;运算规律:交换律,结合律,分配律,对偶律;概率的基本性质及五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯公式;利用独立性进行概率计算,伯努力试验计算。

近几年单独考查本章的考题相对较少,但是大多数考题中将本章的内容作为基础知识来考核。

第二章 随机变量及其分布

本章的主要内容是:随机变量及其分布函数的概念和性质,分布律和概率密度,随机变量的函数的分布,一些常见的分布:0-1分布、二项分布、超几何分布、泊松分布、均匀分布、正态分布、指数分布及它们的应用。而重点要求会计算与随机变量相联系的事件的概率,用泊松分布近似表示二项分布,以及随机变量简单函数的概率分布。

近几年单独考核本章内容不太多,主要考一些常见分布及其应用、随机变量函数的分布。

第三章 二维随机变量及其分布

本章是概率论重点部分之一,尤其是二维随机变量及其分布的概念和性质,边缘分布,边缘密度,条件分布和条件密度,随机变量的独立性及不相关性,一些常见分布:二维均匀分布,二维正态分布,几个随机变量的简单函数的分布。

第四章 随机变量的数字特征

本章内容是:随机变量的数字特征:数学期望、方差、标准差、矩、协方差、相关系数,常见分布的数字特征。而重点是利用数字特征的基本性质计算具体分布的数字特征,根据一维和二维随机变量的概率分布求其函数的数学期望。

第五章 大数定律和中心极限定理

本章内容包括三个大数定律:切比雪夫定律、伯努利大数定律、辛钦大数定律,以及两个中心极限定理:棣莫弗——拉普拉斯定理、列维——林德伯格定理。

本章的内容不是重点,也不经常考,只要把这些定律、定理的条件与结论记住就可以了。

常见题型有 1.估计概率的值

2.与中心极限定理相关的命题 第六章 数理统计的基本概念

数理统计的基本概念主要是总体、简单随机样本、统计量、样本均值、样本方差及样本矩。重点是正态总体的抽样分布,包括样本均值、样本方差、样本矩、两个样本的均值差、两个样本方差比的抽样分布。这会涉及标准正态分布、分布、 分布和 分布,要掌握这些分布对应随机变量的典型模式及它们参数的确定,这些分布的分位数和相应的数值表。

本章是数理统计的基础,也是重点之一。 1.样本容量的计算 2.分位数的求解或判定

4.总体或统计量的分布函数的求解或判定或证明 5.求总体或统计量的数字特征 第七章 参数估计

本章的主要内容是参数的点估计、估计量与估计值的概念、一阶或二阶矩估计和最大似然估计法、未知参数的置信区间、单个正态总体均值和方差的置信区间、两个总体的均值差和方差比的置信区间。而重点是矩估计法和最大似然估计法,有时要求验证所得估计量的无偏性。

常见题型有

1.统计量的无偏性、一致性或有效性

2.参数的矩估计量或矩估计值或估计量的数字特征 3.参数的最大似然估量或估计量或估计量的数字特征 4.求单个正态总体均值的置信区间

考研数学线性代数复习指导

考研数学有哪些复习技巧指导

考研数学有哪些复习技巧指导考研数学复习技巧近年来考研数学试题难度比较大,平均分比较低,而高等数学又是考研数学的重中之重,如何能让考研数学的高分,已经成为广大考研备考生普遍关心的重要问题。高等数学想要拿高分,首先是按照大纲对数学的基本概念、基本方法和基本定理准确把握。如果对数学中的基本概念、方法和原理不清楚,解题时肯定会碰到各种各样的问题,容易丢失
推荐度:
点击下载文档文档为doc格式
15sfc05pv18uhsm07tfq670et7c1ze01764
领取福利

微信扫码领取福利

微信扫码分享