2×2方格必占2白2黑,2×3的方格必占3白3黑,黑白格数都相同.再想到对它们的操作:每个小格同时加1或减1,因黑白格数相等,那么操作中不变的应该是黑格数字和与白格数字和之差,三种图形拼出的图b中这个差也应该不变.于是对比图1和图2, 图1中:黑格数字和一白格数字和=32.
图2中:黑格数字和一白格数字和=(31+A)-32,即(3l+A)-32=32,得A=33.
【前铺】对于表(1),每次使其中的任意两个数减去或加上同一个数,能否经过若干次后(各次减去或加上的数可以不同),变为表(2)?为什么? 分析:因为每次有两个数同时被加上或减去同一个数,所以表中九个数码的总和经过变化后,等于原来的总和加上或减去那个数的2倍,因此总和的奇偶性没有改变。原来九个数的总和为1+2+…+9=45,是奇数,经过若干次变化后,总和仍应是奇数,与右上表九个数的总和是4矛盾。所以不 可能变成右上表.
【前铺】在图(1)的方格表中,对任意相邻的上下或左右两格中的数字同时加1或减1,这算一次操作,经过若干次操作后变为图(2),问:中间图中的A格中的数字是几?
分析:将4×4的方格进行黑白相间染色,如右图所示,每个小格
同时加1或减1,因黑白格数相等,那么操作中不变的应该是黑格数字和与白格数字和之差,由原图(1)知这个差是8,有图(2)可知:白格数之和-黑格数之和=(A+7)-8=8 ,所以A=9. 【例10】 有7个苹果要平均分给12个小朋友,园长要求每个苹果最多分成5份.应该怎样分? 分析:显然每人应该分74311=+=+. 12121234 于是,拿4个苹果,每个苹果3等分;拿3个苹果,每个苹果4等分. 【例11】 如右图所示,将1~12顺次排成一圈. 如果报出一个数a(在1~12之间),那么就从数a的位置顺时针走a个数的位置. 例如a=3,就从3的位置顺时针走3个数的位置到达6的位置;a=11,就从11的位置顺时针走11个数的位置到达10的位置. 问:a是多少时,可以走到7的位置?
分析:不存在.当1≤a≤6时,从a的位置顺时针走a个数的位置,应到达2a的位置;当7≤a≤12时,从a的位置顺时针走a个数的位置,应到达2a-12的位置.由上面的分析知,不论a是什么数,结果总是走到偶数的位置,不会走到7的位置.
【例12】 有一位老人,他有三个儿子和十七匹马.他在临终前对他的儿子们说:“我已经写好了遗嘱,我把马留给你们,你们一定要按我的要求去分.”老人去世后,三兄弟看到了遗嘱.遗嘱上写着:“我把十七匹马全都留给我的三个儿子.长子得
111,次子得,给幼子.
392不许流血,不许杀马.你们必须遵从父亲的遗愿!”请你帮助他们分分马吧!
分析:这三个兄弟迷惑不解,尽管他们在学校里学习成绩都不错,可是他们还是不会用17除以2、用17除以3、用17除以9,又不让马流血.于是他们就去请教当地一位公认的智者.这位智者看了遗嘱以后说:“我借给你们一匹马,去按你们父亲的遗愿分吧!”老人原有17匹马,加上智者借给的一匹,一共18匹.于是三兄弟按照18匹马的
111、和,分别239得到了九匹、六匹和两匹.9+6+2=17(匹).还剩下一匹,是智者借给的那匹,还给智者. 【巩固】19匹马,甲、乙、丙分别得
111,,,应如何分? 245分析:借1匹马,甲、乙、丙分别得10,5,4.
【巩固】甲、乙分43头牛,甲得
52,乙得,应如何分?
95分析:借2头牛,甲得18头,乙得25头,再将借来的2头牛还回去.
【例13】 今有101枚硬币,其中有100枚同样的真币和1枚伪币,伪币和真币的重量不同.现需弄清楚伪币究竟比真币轻还是重、但只有一架没有砝码的天平,那么怎样利用这架天平称两次,来达到目的?
分析:101枚硬币,如果进行称重的话应该保证天平两边的硬币数相等.因此应该首先拿掉一个,把剩下的100枚硬币在天平两边各放50个.如果这时天平两边重量相等的话,就说明剩下的那个是伪币.只要任意拿出一个真币和这个伪币再称一次就可以知道真币和伪币那种比较重了.
如果天平两边重量不相等的话,就是说伪币还在这100个硬币中.可以拿出其中比较轻的50个.这时同样还是把他们分成两个25枚,分到天平两边称重.
如果两边重量相等,说明这50个硬币都是真的.伪币在比较重的那50个中,因此伪币就应该比真币重.如果两边重量不相等,说明伪币就在这50个比较轻的硬币中,显然伪币就应该比真币轻. 同样道理,也可以把比较重的那50个硬币分成两个25进行称重,同样也可以得出结论,希望大家自己想一下.
本题实际上不要求棋子数必须是101,只要去掉一个棋子后剩下的棋子可以被分成相等的两份,每一份再分成相等的两份,也就是4的倍数就可以了,比如49,73等等都可以.
【巩固】8个金币中,有一个比真金币轻的假金币,你能用天平称两次就找出来吗(天平无砝码)?
分析:讲解此题前,教师可先问学生:“3个金币,有1个假的比较轻,你称1次能把它找出来么?”
将8个金币分成:3+3+2,3组,把3和3进行称量,如果重量相同,称剩下的2个金币即可找到假币;如果重量不同,将比较重的3个金币拿出,用天平称量2个,剩下1个,天平不平衡易得答案,若此时天平平衡则剩下的那个是假的.
【例14】 据说有一天,韩信骑马走在路上,看见两个人正在路边为分油发愁.这两个人有一只容量10斤的篓子,里面装满了油;还有一只空的罐和一只空的葫芦,罐可装7斤油,葫芦可装3斤油.要把这10斤油平分,每人5斤. 但是谁也没有带秤,只能拿手头的三个容器倒来倒去.应该怎样分呢?
分析:韩信给两人说了一句话:“葫芦归篓,篓归罐”,两人按此分油,果然把油分成了两半.具体做法如下表:
韩信的话指明了倒油的方向,始终按从篓向罐中倒,从罐向葫芦中倒,从葫芦向篓中倒的方向操作.按照相反的方向倒,即“葫芦归罐,罐归篓”怎样?我们试试.
看来也行,只是多倒了一次.要注意的是:保持一定的方向很重要. 如果在倒油的过程中,出现从甲倒向乙,又从乙倒回甲(这两步不一定挨着),那么这丽步相互抵消,肯定可以简化掉,所以最佳的倒油方法是始终按一个方向倒.
【前铺】大桶能装5千克油,小桶能装4千克油,你能用这两只桶量出6千克油吗?怎么量? 分析:先将5千克的桶倒满油;再用大桶将小桶倒满,大桶中还有5-4=1(千克)油;然后将小桶倒空,将大桶中1千克倒到小桶中;最后注满大桶,连小桶中共是5+1=6(千克).这道题要学会借助于大桶小桶容积的差量出想获得的中间量(1千克).
【巩固】有一个小朋友叫小满,他学会了韩信分油的方法,心里很是得意. 一天,他遇到了两位农妇. 两位农妇有两个各装满了10升奶的罐子,还有一个5升和一个4升的小桶,她们请求小满就用这些容器将罐子中的奶给两个小桶中各倒入2升奶.小满按照韩信分油的方法,略加变通,就将奶分好了!你说说具体的做法! 分析:答案如表所示
附加题目
【附1】有大,中,小3个瓶子,最多分别可以装入水1000克,700克和300克.现在大瓶中装满水,希望通过水在3个瓶子间的流动使得中瓶和小瓶上标出100克水的刻度线,问最少要倒几次水
分析:通过对三个数字的分析,我们发现700-300-300=100,是计算步数最少的得到100的方法.而由于我们每计算一步就相当于倒一次水,所以倒水最少的方案应该是:
1.大瓶往中瓶中倒满水.
2.中瓶往小瓶中倒满水,这时中瓶中还剩下400克水.
3.小瓶中水倒回大瓶.
4.中瓶再往小瓶中倒满水,这时中瓶中只剩下100克水,标记. 5.小瓶中水倒回大瓶.
6.中瓶中100水倒入小瓶,标记.所以最少要倒6次水.
本题关键是,小瓶中的水每次都要倒掉,不然无法再往小瓶中倒水的.
【附2】只有5升和8升的容器,要怎样量出2升的水呢?
分析:将5升的容器装满水,倒在8升的容器中去,8升的容器中装入了5升的水,再一次将5升的容器装满水,倒在8升的容器里,这次8升的容器装不下5升的水了,只能装入3升的水。而5升的容器中就剩下2升的水了.
【附3】有6张电影票(如右图),想撕成相连的3张,共有________种不同的撕法. 分析:形如
的有2种,形如
的有8种.
【附4】老师在黑板上画了9个点,要求同学们用一笔画出一条通过这9个点的折线(只许拐三个弯儿).你能办到吗?
分析:大家开始尝试多次之后可能会得出“不可能”的结论,但是大家不要忽略一点,题中并没要求所有折线只能限定在这9个点的范围之内.我们把折线的范围冲破本题9个点所限定的正 方形,那么问题就容易解决了,如右图:
【附5】右图是一个圆盘,中心轴固定在黑板上.开始时,圆盘上每个数字所对应的黑板处均写着0.然后转动圆盘,每次可以转动90°的任意整数倍,圆盘上的四个数将分别正对着黑板上写数的位置,将圆盘上的数加到黑板上对应位置的数上.问:经过若干次后,黑板上的四个数是否可能都是999?
分析:不可能.因为每次加上的数之和是 1+2+3+4=10,所以黑板上的四个数之和永远是10的整数倍. 999×4=3996,不是10的倍数,所以黑板上的四个数不可都是999.
【附6】你有四个装药丸的罐子,每个药丸都有一定的重量,被污染的药丸是没被污染的重量+1.只称量一次,如何判断哪个罐子的药被污染了?
分析:第一瓶拿一个药丸,第二瓶拿两个药丸,第三瓶拿三个,第四瓶拿四个,称一下比标准的10个药丸重多少,重多少就是第几个瓶子里的药丸被污染.
【附7】对于任意一个自然数 n,当 n为奇数时,加上121;当n为偶数时,除以2,这算一次操作现在对231连续进行这种操作,在操作过程中是否可能出现100?为什么?
提示:同学们碰到这种题,可能会“具体操作”一下,得到
这个过程还可以继续下去,虽然一直没有得到100,但也不能肯定得不到100.当然,连续操作下去会发现,数字一旦重复出现后,这一过程就进入循环,这时就可以肯定不会出现100.因为这一过程很长,所以这不是好方法.因为231和121都是11的倍数,2不是11的倍数,所以在操作过程中产生的数也应当是11的倍数. 100不是11的倍数,所以不可能出现. 操作问题不要一味地去“操作”,而要找到解决问题的窍门.