热水供应系统选择
5.2.2 本条规定了集中供应系统热源选择的原则。
节约能源是我国的基本国策,在设计中应对工程基地附近进行调查研究,全面考虑热源的选择: 首先应考虑利用工业的余热、废热、地热和太阳能。如广州、福州等地均有利用地热水作为热水供应的水源。以太阳能为热源的集中热水供应系统,由于受日照时间和风雪雨露等气候影响,不能全天候工作,在要求热水供应不问断的场所,应另行增设辅助热源,用以辅助太阳能热水器的供应工况,使太阳能热水器在不能供热或供热不足时能予以补充。
地热在我国分布较广,是一项极有价值的资源,有条件时,应优先加以考虑。但地热水按其生成条件不同,其水温、水质、水量和水压有很大区别,应采取相应的各不相同的技术措施,如: 1 当地热水的水质不符合生活热水水质要求应进行水质处理;
2 当水质对钢材有腐蚀时,应对水泵、管道和贮水装置等采用耐腐蚀材料或采取防腐蚀措施; 3 当水量不能满足设计秒流量或最大小时流量时,应采用贮存调节装置;
4 当地热水不能满足用水点水压要求时,应采用水泵将地热水抽吸提升或加压输送至各用水点。 地热水的热、质利用应尽量充分,有条件时,应考虑综合利用,如先将地热水用于发电再用于采暖空调;或先用于理疗和生活用水再用作养殖业和农田灌溉等。
5.2.2A 太阳能是取之不尽用之不竭的能源,近年来太阳能的利用已有很大发展,在日照较长的地区取得的效果更佳。本条日照时数、年太阳辐射量参数摘自国家标准《民用建筑太阳能热水系统应用技术规范》GB 50364—2005中第三等级的“资源一般”区域。
5.2.2B 采用水源热泵、空气源热泵制备生活热水,近年来在国内有一些工程应用实例。它是一种新型能源,当合理应用该项技术时,节能效果显著。但选用这种热源时,应注意水源、空气源的适用条件及配备质量可靠的热泵机组。 5.2.3 热力网和区域性锅炉应是新规划区供热的方向,对节约能源和减少环境污染都有较大的好处,应予推广。
5.2.5 为保护环境,消除燃煤锅炉工作时产生的废气、废渣、烟尘对环境的污染,改善司炉工的操作环境,提高设备效率,燃油、燃气常压热水锅炉(又称燃油燃气热水机组)已在全国各地许多工程的集中生活热水系统中推广应用,取得了较好的效果。
用电能制备生活热水,最方便、最简洁,且无二氧化碳排放,但电的热功当量较低,而且我国总体的电力供应紧张,因此,除个别电源供应充沛的地方用于集中生活热水系统的热水制备外,一般用于太阳能等可再生能源局部热水供应系统的辅助能源。
5.2.6 局部热水供应系统的热源宜首先考虑无污染的太阳能热源,在当地日照条件较差或其他条件限制采用太阳能热水器时,可视当地能源供应情况,在经技术经济比较后确定采用电能、燃气或蒸汽为热源。
5.2.8 规定了利用烟气、废气、高温无毒废液等作为热水供应系统的热媒时,应采取的技术措施。
5.2.9 蒸汽直接通入水中的加热方式,开口的蒸汽管直接插在水中,在加热时,蒸汽压力大于开式加热水箱的水头,蒸汽从开口的蒸汽管进入水箱,在不加热时,蒸汽管内压力骤降,为防止加热水箱内的水倒流至蒸汽管,应采取防止热水倒流的措施,如提高蒸汽管标高、设置止回装置等。
第 1 页 共 4 页
蒸汽直接通入水中的加热方式,会产生较高的噪声,影响人们的工作、生活和休息,如采用消声混合器,可大大降低加热时的噪声,将噪声控制在允许范围内,因此,条文明确提出要求。
采用汽—水混合设备的加热方式,将城市管网供给的蒸汽与冷水混合直接供给生活热水,较好地解决了大系统回收凝结水的难题,但采用这种水加热方式,必须保证稳定的蒸汽压力和供水压力,保证安全可靠的温度控制,否则,应在其后加贮热设备,以保证安全供水。
5.2.10 本条对集中热水供应系统设置回水循环管作出规定。
1 强调了凡集中热水供应系统考虑节水和使用的要求均应设热水回水管道,保证热水在管道中循环。 2 所有循环系统均应保证立管和干管中热水的循环。对于要求随时取得合适温度的热水的建筑物,则应保证支管中的热水循环,或有保证支管中热水温度的措施。保证支管中的热水循环问题,在工程设计中要真正实现支管循环,有很大的难度,一是计量问题,二是循环管的连接问题。解决支管中热水保温问题的另一途径是采用自控电伴热的方式。已有一些工程采用这种方法。
5.2.10A 设有多个卫生间的住宅、别墅采用一个热水器(机组)供给热水时,因热水支管不设热水循环管道,则每使用一次水要放走很多冷水,因此,本规范修订时,对此种局部热水供应系统保证循环效果予以强调。
5.2.11 集中热水供应系统采用管路同程布置的方式对于防止系统中热水短路循环,保证整个系统的循环效果,各用水点能随时取到所需温度的热水,对节水、节能有着重要的作用。
根据工程实践,小区集中热水供应系统循环管道采用同程布置很困难,因此,此次局部修订时,将其限定为建筑物内的热水循环管道的布置要求。
采用同程布置的最终目的,是保证循环不短路,尽量减少开启水嘴时放冷水的时间。根据近年来的工程实践,在一定条件下采用温控阀、限流阀和导流三通等方法亦可达到保证循环效果的目的。因此,将原条文中的“应”改为“宜”采用同程布置的方式。但“应”改为“宜”并非降低标准,无论采用何种管道布置方式均须保证干管和立管的循环效果。
居住小区热水循环管道可采用分设小循环泵,在一定条件下设温控阀、限流阀、导流三通等措施保证循环效果。
设循环泵,强调采用机械循环,是保证系统中热水循环效果的另一重要措施。
5.2.12 对用水集中、用水量又大的部门,推荐采用设单独热水管网供水或采用局部加热设备。 在大型公共建筑中,一般均设有洗衣房、厨房、集中浴室等,这些部门用水量大,用水时间与其他用水点也不尽一致,且对热水供应系统的稳定性影响很大,故其供水管网宜与其他系统分开设置。
5.2.13 此条对高层建筑热水系统分区作了规定。
1 生活热水主要用于盥洗、淋浴,而这二者均是通过冷、热水混合后调到所需使用温度。因此,热水供水系统应与冷水系统竖向分区一致,保证系统内冷、热水的压力平衡,达到节水、节能、用水舒适的目的。
原则上,高层建筑设集中供应热水系统时应分区设水加热器,其进水均应由相应分区的给水系统设专管供应,以保证热水系统压力的相对稳定。如确有困难时,有的单幢高层住宅的集中热水供应系统,只能采用一个或一组水加热器供整幢楼热水时,可相应地采用质量可靠的减压阀等管道附件来解决系统冷热水压力平衡的问题。
2 减压阀大量应用在给水热水系统上,对于简化给水热水系统起了很大作用,但在应用实践中也出了
第 2 页 共 4 页
一些问题。当减压阀用于热水系统分区时,除满足本规范第3.4.9、3.4.10条要求之外,其密封部分材质应按热水温度要求选择,尤其要注意保证各区热水的循环效果。 图3为减压阀安装在热水系统的三个不同图式:
图3(a)为高低两区共用一加热供热系统,分区减压阀设在低区的热水供水立管上,这样高低区热水回水汇合至图中“A”点时,由于低区系统经过了减压,其压力将低于高区,即低区管网中的热水就循环不了。解决的办法只能在高区回水干管上也加一减压阀,减压值与低区供水管上减压阀的减压值相同,然后再把循环泵的扬程加上系统所减掉的压力值。这样做固然可以实现整个系统的循环,但有意加大水泵扬程,即造成耗能不经济,也将造成系统运行的不稳定。 图3(b)为高低区分设水加热器的系统,两区水加热器均由高区冷水高位水箱供水,低区热水供水系统的减压阀设在低区水加热器的冷水供水管上。这种系统布置与减压阀设置形式是比较合适的。 图3(c)为高低区共用一集中热水供应系统的另一种图式。减压阀均设在分户支管上,不影响立管和干管的循环。这种图式相比图3(a)、(b)的优点是系统不需要另外采取措施就能保证循环系统正常工作。缺点是低区一家一户均需设减压阀,减压阀数量多,要求质量可靠。
5.2.14 开式热水供应系统即带高位热水箱的供水系统。系统的水压由高位热水箱的水位决定,不受市政给水管网压力变化及水加热设备阻力变化等的影响,可保证系统水压的相对稳定和供水安全可靠。
减压稳压阀取代高位热水箱应用于集中热水供应系统中,将大大简化热水系统。
5.2.15 本条对热水配水点处水压作出了规定。
工程实际中,由于冷水热水管径不一致,管长不同,尤其是当用高位冷水箱通过设在地下室的水加热器再返上供给高区热水时,热水管路要比冷水管长得多。这样相应的阻力损失也就要比冷水管大。另外,热水还须附加通过水加热设备的阻力。因此,要做到冷水热水在同一点压力相同是不可能的。只能达到冷热水水压相近。
“相近”绝不意味着降低要求。因为供水系统内水压的不稳定,将使冷热水混合器或混合龙头的出水温度波动很大,不仅浪费水,使用不方便,有时还会造成烫伤事故。从国内一些工程实践看,条文中
第 3 页 共 4 页