【思考1】已知:如图(1),射线AM//射线BN,AB是它们的公垂线,点D、C分别在AM、BN上运动
(点D与点A不重合、点C与点B不重合),E是AB边上的动点(点E与A、B不重合),在运动过程中始终保持DE?EC,且AD?DE?AB?a. (1)求证:?ADE∽?BEC; (2)如图(2),当点E为AB边的中点时,求证:AD?BC?CD;
(3)设AE?m,请探究:?BEC的周长是否与m值有关?若有关,请用含有m的代数式表示?BEC的周
长;若无关,请说明理由.
. . .. . .
第25题(1)
【思路分析】本题动点较多,并且是以和的形式给出长度。思考较为不易,但是图中有多个直角三角形,所以很自然想到利用直角三角形的线段、角关系去分析。第三问计算周长,要将周长的三条线段分别转化在一类关系当中,看是否为定值,如果是关于M的函数,那么就是有关,如果是一个定值,那么就无关,于是就可以得出结论了。
【思考2】 △ABC是等边三角形,P为平面的一个动点,BP=BA,若0?<∠PBC<180°,
且∠PBC平分线上的一点D满足DB=DA,
(1)当BP与BA重合时(如图1),∠BPD= °; (2)当BP在∠ABC的部时(如图2),求∠BPD的度数;
(3)当BP在∠ABC的外部时,请你直接写出∠BPD的度数,并画出相应的图形.
【思路分析】本题中,和动点P相关的动量有∠PBC,以及D点的位置,但是不动的量就是BD是平分线并且DB=DA,从这几条出发,可以利用角度相等来找出相似、全等三角形。事实上,P点的轨迹就是以B为圆心,BA为半径的一个圆,那D点是什么呢?留给大家思考一下~
【思考3】如图:已知,四边形ABCD中,AD//BC, DC⊥BC,已知AB=5,BC=6,cosB=
第25题(2) 3. 5点O为BC边上的一个动点,连结OD,以O为圆心,BO为半径的⊙O分别交边AB于点P,交线段OD于点
.. .专业 . .
. . .. . .
M,交射线BC于点N,连结MN. (1)当BO=AD时,求BP的长;
(2)点O运动的过程中,是否存在BP=MN的情况?若存在,请求出当BO为多长时BP=MN;若不存在,请说明理由;
(3)在点O运动的过程中,以点C为圆心,CN为半径作⊙C,请直接写出当⊙C存在时,⊙O与⊙C的位置关系,以及相应的⊙C半径CN的取值围。 A A D D P M
B C B O N C
(备用图)
【思路分析】这道题和其他题目不同点在于本题牵扯到了有关圆的动点问题。在和圆有关的问题当中,时刻不要忘记的就是圆的半径始终相等这一个隐藏的静态条件。本题第一问比较简单,等腰梯形中的计算问题。第二问则需要用设元的方法表示出MN和BP,从而讨论他们的数量关系。第三问的猜想一定要记得分类分情况讨论。
【思考4】在ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90得到线段EF(如图1)
(1)在图1中画图探究:
①当P为射线CD上任意一点(P1不与C重合)时,连结EP1绕点E逆时针旋转90 得到线段EC1.判断直线FC1与直线CD的位置关系,并加以证明;
②当P2为线段DC的延长线上任意一点时,连结EP2,将线段EP2绕点E 逆时针旋转90得到线段EC2.判断直线C1C2与直线CD的位置关系,画出图形并直接写出你的结论. (2)若AD=6,tanB=
出自变量x的取值围.
4,AE=1,在①的条件下,设CP1=x,SP1FC1=y,求y与x之间的函数关系式,并写3
【思路分析】本题是去年中考原题,虽不是压轴,但动点动线一起考出来,难倒了不少同学。事实上就在于如何把握这个旋转90°的条件。旋转90°自然就是垂直关系,于是又出现了一堆直角三角形,于是证角,证线就手到擒来了。第二问一样是利用平行关系建立函数式,但是实际过程中很多同学依然忘记分类讨论的思想,漏掉了很多种情况,失分非常可惜。建议大家仔细研究这道中考原题,按照上面总结的一般思路去拆分条件,步步为营
.. .专业 . .
. . .. . .
的去解答。
第三部分 思考题解析 【思考1解析】
(1)证明:∵ DE?EC,∴ ?DEC?90?.∴ ?AED??BEC?90?. 又∵ ?A??B?90?,∴ ?AED??EDA?90?. ∴ ?BEC??EDA.∴ ?ADE∽?BEC. (2)证明:如图,过点E作EF//BC,交CD于点F, ∵ E是AB的中点,容易证明EF?12(AD?BC). 在Rt?DEC中,∵ DF?CF,∴ EF?12CD. ∴
1第25题
2(AD?BC)?12CD. ∴ AD?BC?CD.
(3)解:?AED的周长?AE?AD?DE?a?m,BE?a?m. 设AD?x,则DE?a?x.
∵ ?A?90?,∴ DE2?AE2?AD2.即a2?2ax?x2?m2?x2.
∴ x?a2?m22a.
由(1)知?ADE∽?BEC,
a2?m2 ∴ ?ADE的周长AD?BEC的周长?BE?2aa?m?a?m2a. ∴ ?BEC的周长?2aa?m??ADE的周长?2a. ∴ ?BEC的周长与m值无关.
【思考2答案】
.. .专业 . .
. . .. . .
解:(1)∠BPD= 30 °; (2)如图8,连结CD.
解一:∵ 点D在∠PBC的平分线上,
∴ ∠1=∠2.
∵ △ABC是等边三角形, ∴ BA=BC=AC,∠ACB= 60°. ∵ BP=BA, AP ∴ BP=BC. ∵ BD= BD, ∴ △PBD≌△CBD.
B12D34C ∴ ∠BPD=∠3.- - - - - - - - - - - - - - - - - 3分 图8 ∵ DB=DA,BC=AC,CD=CD, ∴ △BCD≌△ACD. ∴ ?3??4?12?ACB?30?. ∴ ∠BPD =30°. 解二:∵ △ABC是等边三角形, ∴ BA =BC=AC. ∵ DB=DA,
∴ CD垂直平分AB. ∴ ?3??4?12?ACB?30?. ∵ BP=BA, ∴ BP=BC.
∵ 点D在∠PBC的平分线上,
∴ △PBD与△CBD关于BD所在直线对称. ∴ ∠BPD=∠3. ∴ ∠BPD =30°. (3)∠BPD= 30°或 150° . 图形见图9、图10.
A
PAA P或D DB CCBCB 图9 图10 PD
【思考3解析】
解:(1)过点A作AE⊥BC,在Rt△ABE中,由AB=5,cosB=35得BE=3. ∵CD⊥BC,AD//BC,BC=6,
.. .专业 . .
. . .. . .
∴AD=EC=BC-BE=3. 当BO=AD=3时, 在⊙O中,过点O作OH⊥AB,则BH=HP
∵
BHBO?cosB,∴BH=3?35?95. ∴BP=185.
(2)不存在BP=MN的情况-
假设BP=MN成立,
∵BP和MN为⊙O的弦,则必有∠BOP=∠DOC. 过P作PQ⊥BC,过点O作OH⊥AB,
∵CD⊥BC,则有△PQO∽△DOC- 设BO=x,则PO=x,由
BHx?cosB?35,得BH=35x, ∴BP=2BH=
65x. ∴BQ=BP×cosB=
182425x,PQ=25x. ∴OQ=x?18725x?25x.
24∵△PQO∽△DOC,∴PQDCx4OQ?OC即257?,得x?29x6?x6. 25当x?296时,BP=65x=295>5=AB,与点P应在边AB上不符, ∴不存在BP=MN的情况.
(3)情况一:⊙O与⊙C相外切,此时,0<CN<6;------7分 情况二:⊙O与⊙C相切,此时,0<CN≤
73.-------8分 A
D
P
M H B
Q O N C
【思考4解析】
.. .专业 . .
中考总复习之动点问题经典习题及答案



