高中数学必修2知识点总结
第一章 空间几何体
1.1柱、锥、台、球的结构特征
(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,
由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱ABCDE?ABCDE或用对角线的端点字母,如五棱柱AD'
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于
底面的截面是与底面全等的多边形。
(2)棱锥
定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
表示:用各顶点字母,如五棱锥P?ABCDE
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高
的比的平方。
(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
表示:用各顶点字母,如五棱台P?ABCDE
几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点
(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。 (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。 (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
1.2空间几何体的三视图和直观图
(1)定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、 俯视图(从上向下)
注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;
侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
'''''''''''''''
(2)画三视图的原则:
长对齐、高对齐、宽相等
(3)直观图:斜二测画法 (4)斜二测画法的步骤:
(1).平行于坐标轴的线依然平行于坐标轴;
(2).平行于y轴的线长度变半,平行于x,z轴的线长度不变; (3).画法要写好。
(5)用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图
1.3 空间几何体的表面积与体积
(1)几何体的表面积为几何体各个面的面积的和。
(2)特殊几何体表面积公式(c为底面周长,h为高,h为斜高,l为母线)
'S直棱柱侧面积?ch S圆柱侧?2?rh S正棱锥侧面积?1ch' S圆锥侧面积??rl2
S正棱台侧面积?
1?(r?R)?l (c1?c2)h' S圆台侧面积2S圆柱表?2?r?r?l? S圆锥表??r?r?l? S圆台表??r2?rl?Rl?R2??
(3)柱体、锥体、台体的体积公式
112V?Sh??r hV??rh V柱?Sh V圆柱?Sh 锥 圆锥332111'?S)h??(r2?rR?R)2h V台?(S'?S'S?S)h V圆台?(S'?SS333
(4)球体的表面积和体积公式:
V=4?R ; S=4?R
球323球面第二章 直线与平面的位置关系
2.1空间点、直线、平面之间的位置关系 (1)平面
① 平面的概念: A.描述性说明; B.平面是无限伸展的;
② 平面的表示:通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);
也可以用两个相对顶点的字母来表示,如平面BC。
A
D α B
C
③ 点与平面的关系:点A在平面?内,记作A??;点A不在平面?内,记作A??
点与直线的关系:点A的直线l上,记作:A∈l; 点A在直线l外,记作A?l; 直线与平面的关系:直线l在平面α内,记作l?α;直线l不在平面α内,记作l?α。 (2)公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。
(即直线在平面内,或者平面经过直线) 应用:检验桌面是否平; 判断直线是否在平面内 用符号语言表示公理1:A?l,B?l,A??,B???l?? (3)公理2:经过不在同一条直线上的三点,有且只有一个平面。
推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。 公理2及其推论作用:①它是空间内确定平面的依据 ②它是证明平面重合的依据 (4)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线
符号:平面α和β相交,交线是a,记作α∩β=a。
符号语言:P?AB?AB?l,P?l 公理3的作用:
①它是判定两个平面相交的方法。
②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。 ③它可以判断点在直线上,即证若干个点共线的重要依据。 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系:
相交直线:同一平面内,有且只有一个公共点; 共面直线
平行直线:同一平面内,没有公共点;
异面直线: 不同在任何一个平面内,没有公共点。 2 公理4:平行于同一条直线的两条直线互相平行。 符号表示为:设a、b、c是三条直线
a∥b =>a∥c c∥b 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。
3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4 注意点:
① a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为简便,点O一般取在两直线中的一条上; ?② 两条异面直线所成的角θ∈(0, );
2③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;
⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系 1、直线与平面有三种位置关系:
(1)直线在平面内 —— 有无数个公共点
(2)直线与平面相交 —— 有且只有一个公共点 (3)直线在平面平行 —— 没有公共点
指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示
a α a∩α=A a∥α
2.2.直线、平面平行的判定及其性质 2.2.1 直线与平面平行的判定
1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。 简记为:线线平行,则线面平行。
符号表示:
A α
b β => a∥α a∥b
2.2.2 平面与平面平行的判定
1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。
符号表示:
a β B β
a∩b = P β∥α a∥α b∥α
2、判断两平面平行的方法有三种: (1)用定义; (2)判定定理;
(3)垂直于同一条直线的两个平面平行。
2.2.3 — 2.2.4直线与平面、平面与平面平行的性质
1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。 简记为:线面平行则线线平行。 符号表示:
a∥α
a β a∥b α∩β= b
作用:利用该定理可解决直线间的平行问题。
2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。 符号表示:
α∥β
α∩γ= a a∥b β∩γ= b
作用:可以由平面与平面平行得出直线与直线平行 2.3直线、平面垂直的判定及其性质 2.3.1直线与平面垂直的判定 1、定义
如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。如图,直线与平面垂直时,它们唯一公共点P叫做垂足。
L Α P
2、判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
注意点: a)定理中的“两条相交直线”这一条件不可忽视;
b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。
2.3.2平面与平面垂直的判定
1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形
A
梭 l β
B
α 2、二面角的记法:二面角α-l-β或α-AB-β
3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。 2.3.3 — 2.3.4直线与平面、平面与平面垂直的性质 1、定理:垂直于同一个平面的两条直线平行。
2性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
本章知识结构框图
平面(公理1、公理2、公理3、公理4) 空间直线、平面的位置关系 直线与平面的位置关系 平面与平面的位置关系 直线与直线的位置关系 第三章 直线与方程
3.1直线的倾斜角和斜率
3.1倾斜角和斜率
1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α= 0°. 2、 倾斜角α的取值范围: 0°≤α<180°. 当直线l与x轴垂直时, α= 90°. 3、直线的斜率:
一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tanα
⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0; ⑵当直线l与x轴垂直时, α= 90°, k 不存在. 由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在.
4、 直线的斜率公式:
给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率: 斜率公式: k=y2-y1/x2-x1 3.1.2两条直线的平行与垂直
1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即
注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L2
2、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即y3.2.1 直线的点 斜式方程
1、 直线的点斜式方程:直线l经过点P0(x0,y0),且斜率为k 2、、直线的斜截式
方程:已知直线l的斜率为k,且与y轴的交点为(0,b) 3.2.2 直线的两点式方程
1、直线的两点式方程:已知两点P1(x1,x2),P2(x2,y2)其中(x1?y0?k(x?x0)
22PP12??x2?x2???y2?y1?y?kx?b
?x2,y1?y2) y-y1/y-y2=x-x1/x-x2
2、直线的截距式方程:已知直线l与x轴的交点为A(a,0),与y轴的交点为B(0,b),其中a?0,b?0 3.2.3 直线的一般式方程
1、直线的一般式方程:关于x,y的二元一次方程Ax?2、各种直线方程之间的互化。 3.3直线的交点坐标与距离公式
By?C?0(A,B不同时为0)
3.3.两直线的交点坐标
1、给出例题:两直线交点坐标
L1 :3x+4y-2=0 L1:2x+y +2=0
解:解方程组 ??0?3x?4y?2 得 x=-2,y=2 ?0?2x?2y?2所以L1与L2的交点坐标为M(-2,2)
3.3.2 两点间距离
两点间的距离公式
3.3.3 点到直线的距离公式 1.点到直线距离公式:
点P(x0,y0)到直线l:Ax?By?C?0的距离为:d?
Ax0?By0?CA?B22
2、两平行线间的距离公式:
已知两条平行线直
线l1和l2的一般式方程为l1:Ax?By?C1?0,
l2:Ax?By?C2?0,则l1与l2的距离为d?
第四章
4.1.1 圆的标准方程
1、圆的标准方程:(x?a)?(y?b)?r
222C1?C2A?B22
圆与方程
圆心为A(a,b),半径为r的圆的方程
2、点M(x0,y0)与圆(x?a)?(y?b)?r的关系的判断方法:
222222(1)(x0?a)?(y0?b)>r,点在圆外 (2)(x0?a)?(y0?b)=r,点在圆上 222(3)(x0?a)?(y0?b) 2224.1.2 圆的一般方程 1、圆的一般方程:x?y?Dx?Ey?F?0 222、圆的一般方程的特点: (1)①x2和y2的系数相同,不等于0. ②没有xy这样的二次项. (2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了. (3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。 4.2.1 圆与圆的位置关系 1、用点到直线的距离来判断直线与圆的位置关系. 设直线l:ax?by?c?0,圆C:x2?y2?Dx?Ey?F?0,圆的半径为r,圆心(?线的距离为d,则判别直线与圆的位置关系的依据有以下几点: (1)当d?r时,直线l与圆C相离;(2)当d?r时,直线l与圆C相切; (3)当d?r时,直线l与圆C相交; 4.2.2 圆与圆的位置关系 两圆的位置关系. 设两圆的连心线长为l,则判别圆与圆的位置关系的依据有以下几点: (1)当l?r1?r2时,圆C1与圆C2相离;(2)当l?r1?r2时,圆C1与圆C2外切; DE,?)到直22(3)当|r1?r2|?l?r1?r2时,圆C1与圆C2相交; (4)当l?|r1?r2|时,圆C1与圆C2内切;(5)当l?|r1?r2|时,圆C1与圆C2内含; 4.2.3 直线与圆的方程的应用 直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断: (1)设直线l:Ax?By?C?0,圆C:?x?a?2??y?b?2?r2,圆心C?a,b?到l的距离为d?Aa?Bb?C, A2?B2则有d?r?l与C相离;d?r?l与C相切;d?r?l与C相交 22(2)设直线l:Ax?By?C?0,圆C:?x?a???y?b??r2,先将方程联立消元,得到一个一元二次方程之后,令其中的判别式为?,则有 ??0?l与C相离;??0?l与C相切;??0?l与C相交 2注:如果圆心的位置在原点,可使用公式xx0?yy0?r去解直线与圆相切的问题,其中?x0,y0?表示切点坐标,r表示半径。 1、利用平面直角坐标系解决直线与圆的位置关系; 2、过程与方法 用坐标法解决几何问题的步骤: 第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题; 第二步:通过代数运算,解决代数问题; 第三步:将代数运算结果“翻译”成几何结论. (3)过圆上一点的切线方程: 2①圆x2+y2=r2,圆上一点为(x0,y0),则过此点的切线方程为xx0?yy0?r (课本命题). ②圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2 (课本命题的推广). 4.3.1空间直角坐标系 1、点M对应着唯一确定的有序实数组(x,y,z),x、y、z分别是P、Q、R在x、y、z轴上的坐标 2、有序实数组(x,y,z),对应着空间直角坐标系中的一点 PRMOQM'y3、空间中任意点M的坐标都可以用有序实数组(x,y,z)来表示,该数组叫做点M在此空间直角坐标系中的坐标,记M(x,y,z),x叫做点M的横坐标,y叫做点M的纵坐标,z叫做点M的竖坐标。 4.3.2空间两点间的距离公式 1、空间中任意一点P1(x1,y1,z1)到点P2(x2,y2,z2)之间的距离公式 OxzP1P2M1N1xMM2HN2yNP1P2?(x1?x2)2?(y1?y2)2?(z1?z2)2
新人教版高中数学必修2知识点总结



