备战2020高考黄金30题系列之数学填空题压轴题【新课标版】 专题2 数 列
1.(2020·荆门市龙泉中学高三月考)数列?an?满足anan?1an?2?an?an?1?an?2anan?1?1,n?N?*?,且
a1?1,a2?2.若an?Asin??n????c???0,0?????,则实数A? .
【答案】23 3【解析】数列?an?满足anan?1an?2?an?an?1?an?2anan?1?1,n?N?*?,且a1?1,a2?2.
令n?1,得:2a3?1?2?a3,解得a3?3;令n?2,得:6a4?2?3?a4,解得a4?1;令n?3,得:
3a5?1?3?a5,解得a5?2;…;可得an?3?an,a1?1,a2?2,a3?3.
∵an?Asin??n????c???0,0?????,∴∴an?Asin?2???3,解得??2?. 3?2??n????c?0?????, ?3??2???2???2??1?Asin???c2?Asin?2???c3?Asin?3????c. ∴,??,????3??3??3??2?????1?Asin???c2??Asin化为:??,?????c,3?Asin??c.
?3??3?∴Asin??Asin?????2??????1,Asin??Asin?????2, ?3??3?即
3A3sin??Acos??1① 223A3sin??Acos??2② 22①+②得:3Asin??3,即Asin??1, ①﹣②得:3Acos???1,即Acos???3,联立解得:tan???3,0????, 3∴??2?2323,∴A?,故答案为:. 333【押题点】数列递推关系;数列与三角函数的周期性
2.(2020·安徽六安一中高三月考)已知数列?an?的前n项和为Sn,若a1?1且Sn?n?1?an?1(n?N*),数
列??n?173T?≥m?nTn的前项和为,不等式恒成立,则实数m的取值范围是______________. n?1?n2a?19?an?1?【答案】(??,2]
【解析】当n?1时,由S1?2?a2及a1?1可得a2?3,由Sn?n?1?an?1① 可得n?2时,Sn?1?n?an②,
由①-②可得an?1?an?1?an,即an?1?2an?1,∴an?1?1?2(an?1),其中n?2, 当n?1时,a2?1?4?2(a1?1),故
nan?1?1?2对任意的n?1总成立,即{an?1}是首项为2,公比为2an?1nn的等比数列,故an?1?2,则a?1?2n,
n123n则Tn=+2+3+L+n③,
22221123nTn?2?3?4?L?n?1④ 2222211(1?n)11111n2?n?1?n?2由③?④可得2Tn?2?22?23?L?2n?2n?1?21,∴Tn2n?12n?11?2?2?n?2, 2n由Tn?17313?2n3≥m?2?n?1≥m?9, ,得n?12a9?1222n?1513?2n13,则An?1?An?n?2,易得{An}在n?7时递减,在n?8时递增,且A7?2?8,A8?2?9, n?122223332?9≥m?9,解得m?2.故答案为:(??,2]. 9,故222设An?2?故{An}的最小值为A8?2?【押题点】数列的通项公式与前n项和的关系;错位相减法;数列不等式恒成立问题
*x23.(2020·四川树德中学二诊)已知函数f(x)?e(x?1),令f1(x)?f?(x),fn?1(x)?fn?(x)n?N,
??若fn(x)?ex?axn2?2an??bnx?cn?,记数列??m?表示不超过实数m的最大整数,?的前n项和为Sn,
2c?b?nn?则?3S2000?? . 【答案】4
*x2【解析】由题意,函数f(x)?e(x?1),且f1(x)?f?(x),fn?1(x)?fn?(x)n?N,
??x2x2可得f1(x)?f?(x)?e(x?4x?3),f2(x)?f1?(x)?e(x?6x?7)
f3(x)?f2?(x)?ex(x2?8x?13),f4(x)?f3?(x)?ex(x2?10x?21),LL
又由fn(x)?ex?axn2?bnx?cn?,可得?an?为常数列,且an?1,
数列?bn?表示首项为4,公差为2的等差数列,∴bn?2n?2, 其中数列?cn?满足c2?c1?4,c3?c2?6,c4?c3?8,L,cn?cn?1?2n, ∴cn?c1?(c2?c1)?(c3?c2)?L?(cn?cn?1)?4?(n?1)(4?2n)?n2?n?1,
22an2?11??∴,
2cn?bn2(n2?n?1)?(2n?2)n2又由
11111111???,???,(n?2), 22nn(n?1)nn?1nn(n?1)n?1n可得数列{1111111}的前n项和为1????L???1?,
n(n?1)223nn?1n?1数列{111111131}的前n项和为1?????L????,
(n?1)?n2334nn?12n?1?2an?131?Sn??∴数列?, ?的前n项和为Sn,满足1?n?12n?1?2cn?bn?∴3(1?131393)?3S2000?3(?),即3??3S2000??,又由?m?表示不超过实数m的200122001200122001最大整数,∴?3S2000??4,故答案为:4.
【押题点】导数的计算;等差数列的通项公式;累加法求解数列的通项公式;裂项法求数列的和
4.(2020·山西长治3月网考)定义R在上的函数f?x?为奇函数,并且其图象关于x=1对称;当x∈(0,1]时,f(x)=9x﹣3.若数列{an}满足an=f(log2(64+n))(n∈N+);若n≤50时,当Sn=a1+a2+…+an取的最大值时,n= . 【答案】26
【解析】∵函数f?x?为奇函数,∴f??x???f?x?,又∵其图象关于直线x=1对称, ∴f?1?x??f?1?x?,即f??x??f?2?x?,