解 (1)设等差数列{an}的首项为a1,公差为d ?S4=4S2,由? ?a2n=2an+1
?4a1+6d=8a1+2d,即? a+?2n-1?d=2a+2?n-1?d+1.?11得a1=1,d=2,所以an=2n-1(n∈N*). b1b2bn1
(2)由已知a+a+…+a=1-2n,n∈N*①
1
2
n
bn-1b1b21
当n≥2时,a+a+…+=1-n-1②
an-1212
bn1b11
①-②得:a=2n,又当n=1时,a=2也符合上式,
n
1
bn1
所以a=2n(n∈N*),由(1)知an=2n-1(n∈N*)
n
2n-1
所以bn=2n(n∈N*). 所以Tn=b1+b2+b3+…+bn 2n-1135
=+2+3+…+n. 22222n-32n-1113
Tn=2+3+…+2222n+2n+1. 两式相减得:
2?2n-111?22
?++…+2n?-n+1 2Tn=2+?2223?22n-131
=2-n-1-n+1.
222n+3所以Tn=3-2n. 18.(2013·广东卷)设各项均为正数的数列{an}的前n项和为Sn,满足4Sn=a2n+1-4n-1,n∈N*, 且a2,a5,a14构成等比数列. (1)证明:a2=4a1+5; (2)求数列{an}的通项公式;
1111(3)证明:对一切正整数n,有aa+aa+…+<2. anan+11223
2
(1)证明 当n=1时,4a1=a22-5,a2=4a1+5,
又an>0,∴a2=4a1+5.
(2)解 当n≥2时,4Sn-1=a2n-4(n-1)-1,
2∴4an=4Sn-4Sn-1=a2n+1-an-4, 22即a2n+1=an+4an+4=(an+2),
又an>0,∴an+1=an+2,
∴当n≥2时,{an}是公差为2的等差数列. 又a2,a5,a14成等比数列.
∴a2a14,即(a2+6)2=a2·(a2+24),解得a2=3. 5=a2·由(1)知a1=1. 又a2-a1=3-1=2,
∴数列{an}是首项a1=1,公差d=2的等差数列. ∴数列{an}的通项公式为an=2n-1. (3)证明 由(2)知
11
= anan+1?2n-1??2n+1?
1?1?1
=2?2n-1-2n+1? ??
1111111所以aa+aa+…+=+++…+
anan+11×33×55×7?2n-1??2n+1?12231??1??11?1???1
-=2??1-3?+?3-5?+…+?2n-12n+1??
????????1?11?
=2?1-2n+1?<2. ??