.
判定3:同旁内角相等,两直线平行。
本章使学生了解在平面内不重合的两条直线相交与平行的两种位置关系,研究了两条直线相交时的形成的角的特征,两条直线互相垂直所具有的特性,两条直线平行的长期共存条件和它所有的特征以及有关图形平移变换的性质,利用平移设计一些优美的图案. 重点:垂线和它的性质,平行线的判定方法和它的性质,平移和它的性质,以及这些的组织运用. 难点:探索平行线的条件和特征,平行线条件与特征的区别,运用平移性质探索图形之间的平移关系,以及进行图案设计。
第六章 平面直角坐标系 一.知识框架
二.知识概念
1.有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)
2.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。 3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
11
.
4.坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。
5.象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。
平面直角坐标系是数轴由一维到二维的过渡,同时它又是学习函数的基础,起到承上启下的作用。另外,平面直角坐标系将平面内的点与数结合起来,体现了数形结合的思想。掌握本节内容对以后学习和生活有着积极的意义。教师在讲授本章内容时应多从实际情形出发,通过对平面上的点的位置确定发展学生创新能力和应用意识。
第七章 三角形 一.知识框架
二.知识概念
12
.
1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。 6.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。 7.多边形的内角:多边形相邻两边组成的角叫做它的内角。
8.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。 9.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。 10.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
11.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
12.公式与性质
三角形的内角和:三角形的内角和为180° 三角形外角的性质:
性质1:三角形的一个外角等于和它不相邻的两个内角的和。 性质2:三角形的一个外角大于任何一个和它不相邻的内角。
13
.
多边形内角和公式:n边形的内角和等于(n-2)·180° 多边形的外角和:多边形的内角和为360°。
多边形对角线的条数:(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。 (2)n边形共有
n(n-3)条对角线。 2三角形是初中数学中几何部分的基础图形,在学习过程中,教师应该多鼓励学生动脑动手,发现和探索其中的知识奥秘。注重培养学生正确的数学情操和几何思维能力。
第八章 二元一次方程组 一.知识结构图
二、知识概念
1.二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次。
14
.
方程,一般形式是 ax+by=c(a≠0,b≠0)。
2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。 3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。
4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。 5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。
6.代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。 7.加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。
本章通过实例引入二元一次方程,二元一次方程组以及二元一次方程组的概念,培养学生对概念的理解和完整性和深刻性,使学生掌握好二元一次方程组的两种解法. 重点:二元一次方程组的解法,列二元一次方程组解决实际问题. 难点:二元一次方程组解决实际问题
第九章 不等式与不等式组 一.知识框架
15