高三数学周测8(参考答案)
1解析:因为A?xx?3x?2?0=x1?x?2,B?x3
?2????x?1?1?x3x?1?30=?xx?1?,???所以eUA?B??x|x?1或x?2??xx?1?xx?2.故选:B.??????2.解析:由(3?i)z?|3?i|得(3?i)z?(3)2?12?2,所以z?22(3?i)2(3?i)31
=???i,4223?i(3?i)(3?i)所以z?
131
?i,所以z的虚部为?.故选:C.222c12
?,c?a2?b2,化简得3a2?4b2,故选B.a23.解析:椭圆的离心率e?
00
4.解析:当x?0时,对于A,y?sine?e?sin2?0,故排除A;??对于B,y?sine?e
?00
??0,故排除B;对于C,y?tane?e
故选:D.?00
??0,故排除C;00
对于D,y?cose?e?cos2?0,符合题意.??5.解析:从编号1,2,3,4,5,6的6张卡片中随机抽取一张,放回后再随机抽取一张,有36个基本事件,其中第一次抽得的卡片上数字能被第二次抽得的卡片上的数字整除有如下基本事件(第一次抽得的卡片1,第二次摸到卡片2用(1,2)表示):(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,2),(2,4),(2,6),(3,3),(3,6),(4,4),(5,5),(6,6),共14个,所以第一次抽得的卡片上数字能被第二次抽得的卡片上的数字整除的概率P?
147?.3618故选:C.111x2y2
?(a?0)6.解析:因为椭圆C:的离心率为,所以,解得a?3,所以椭圆C的??1
2a?12a?1ax2y2方程为??1,所以椭圆的上顶点A(0,3),右顶点B(2,0),所以经过A,B两点的切线方程分别43为y?
3,x?2,所以两条切线的交点坐标为(2,3),又过A,B的切线互相垂直,由题意知交点必在一个与椭圆C同心的圆上,可得圆的半径r?所以椭圆C的蒙日圆方程为x
222?(3)2?7,?y2?7.故选:B.?????????????????????????????
7.解析:在?ABC中,由OA?2OB?OC?0,得OA?OC??2OB?2BO,????1????????????1????????所以BO?(OA?OC),设D为AC的中点,则OD?(OA?OC),221所以BO?OD,所以O为BD的中点,所以S△AOC?
????????
1
S△ABC,2????
????
3?4,2因为BA?BC?4,所以BA?BC?|BA|?|BC|?cos?ABC?|BA|?|BC|?????????
????
????????????????
所以|BA|?|BC|?
????
?????831???183123,所以S△ABC?|BA|?|BC|?sin?ABC??,??322323所以S△AOC?
1233.故选:A.?=
2338.解析:若f?x??m?
11
(0,??)fx??m在(0,??)上恒成立,在上恒成立,即??22xx令g(x)?f(x)?
1lnx?1?,故只需g(x)max?m即可,22xx12
1?x?(lnx?1)?2x???2lnx?1g(x)?0,令,得2,x?eg?(x)?x?
x4x3当0?x?e
?
1
2时,g?(x)?0;当1
g?(x)?0,x?e时,?
12所以g(x)在(0,e?2)上是单调递增,在(e?2,??)上是单调递减,所以当g(x)max?g(e)?
?121ee
,所以实数m的取值范围是m?.故选:B.229.解析:对A,因为a?b?0,所以2abaa
?1,所以log2(ab)?log2b2?log22?log2?log21?0,bbb所以log2(ab)?log2b,故A正确;对B,当c=0时,ac2?bc2不成立,故B错误;对C,因为a?b?0,所以x
bb?aab?aba?1??0,1???0,所以?1?,故C正确;aabbabab?1??1??1?对D,因为函数y???在R上单调递减,又a?b,所以?????,故D错误.?2??2??2?
a?20,d??2,故A错误;a2?18,a5?12解得1n(n?1)21441
?(?2)??n2?21n??(n?)2?所以Sn?20n?,224又n?N?,所以当n?10或n?11时,Sn取得最大值,故C正确;2
令Sn??n?21n?0,解得0?n?21,又n?N?,所以n的最大值为20,故D正确.故选:BCD故选:AC10.解析:由211.解析:函数f(x)的定义域为R,因为f(?x)?3cos(?x)?sin(?x)?3cosx?sinx?f(x),所以f(x)是偶函数,故A正确;因为f(x?π)?
3cos(x?π)?sin(x?π)?3?cosx??sinx
?3cosx?sinx?f(x),所以f(x)是以?为周期的周期函数,故B正确;?3?1????
cosx?sinx?2sin(x?),当x??0,?时,函数f(x)可化为f(x)?3cosx?sinx?2????2232????
此时f(x)在?0,?上单调递增,在?,?上单调递减,故C错误;?62??6?
由于函数f(x)是以?为周期的周期函数,故只需研究一个周期内的最大值即可,不妨取x?[0,?],当x??0,
???????????
f(x)可化为f(x)?2sin(x?),时,函数3?2??
???5????????
x??,x?0,x??x?由,得,所以当,即时,f(x)取得最大值2,????3?36?326?2?
?1?3????
sinx?cosx?2sin(x?),当x??,??时,f(x)??3cosx?sinx?2????2223????
由x??
???2??5??????
,??,得x???,?,所以x??,即x?时,f(x)取得最大值2,3?63?632?2?
故选:ABD.故当x?[0,?]时,f(x)取得最大值2,故D正确.????????????
12.解析:以{AB,AD,AA1}为正交基底建立如图所示的空间直角坐标系,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),A1(0,0,4),B1(2,0,4),E(0,2,2),????????
所以B1E?(?2,2,?2),A1B?(2,0,?4),????????????uuur
因为B1E?A1B??4?0?8?4?0,所以B1E与A1B不垂直,故A错误;????????
CB1?(0,?2,4),CE?(?2,0,2)
???????n?CB1?0??2y1?4z1?0?y1?2z1?设平面B1CE的一个法向量为n?(x1,y1,z1),则由?????,得?,所以?,??2x1?2z1?0?x1?z1?n?CE?0
???
不妨取z1?1,则x1?1,y1?2所以n?(1,2,1),同理可得设平面A1BD的一个法向量为m?(2,2,1),???
故不存在实数?使得n?λm,故平面B1CE与平面A1BD不平行,故B错误;在长方体ABCD?A1B1C1D1中,B1C1?平面CDD1C1,故B1C1是三棱锥B1?CEC1的高,3所以V三棱锥C1?B1CE?V三棱锥B1?CEC1?
1118
S△CEC1?B1C1???4?2?2?,故C正确;33232222?2?4三棱锥C1?B1CD1的外接球即为长方体ABCD?ABC故外接球的半径R??6,111D1的外接球,2所以三棱锥C1?B1CD1的外接球的表面积S?4?R2?24?,故D正确.故选:CD.13.解析:“?x?R,x2?ax?1?0”为真命题.所以??a2?4?0,解得?2?a?2.答案为:?2,2.??1?1511?1??42?14.解析:?x??的展开式中含2的项为C6x????2,?x???的展开式中的常数项为xxxxx??????
1??1??
Cx?????20,所以?x2?2??x??的展开式中的常数项为15?40??25.故答案为:?25.x??x??
33636
64615.解析:方法1:如图,设F1为椭圆右焦点.由题意可知|OF|=|OM|=c=2,由中位线定理可得321x2y2
PF1?2|OM|?4,x??,x?设P(x,y),可得(x?2)?y?16,与方程联立,可解得??1
22952
2
?315?
x(舍),又点P在椭圆上且在轴的上方,求得P???2,2??,所以kPF
??
15?2?15.12方法2:(焦半径公式应用)由题意可知|OF|=|OM|=c=2,由中位线定理可得?315?3
PF1?2|OM|?4,即a?exp?4?xp??,从而可求得P???2,2??,所以kPF
2??
15?2?15.123aba2?b216.解析:不妨设AE?3a,AF?3b,a,b?(0,1)在直角三角形AEF中,易知EF边上的高为h?又五棱锥A?EBCDF的底面面积为S?9?1?
??
ab??2?
13??
ab?ab??2?a2?b2欲使五棱锥A?EBCDF的体积最大,须有平面AEF?平面EBCDF∴Vmax?Sh?9?1?
∵a2?b2?2ab,∴Vmax?9?1?
??
ab?ab92??2ab?abab?
2?2ab4??令t?ab,则t??0,1?,∴Vmax?
92323ft?2t?tf?t?2?3tt?0,1t?0,1,令,,则????????2t?t??44不难知道,当t?
9246646时,f(t)取得最大值∴Vmax???2339496时,五棱锥A?EBCDF的体积取得最大值233故答案为:23.综上所述,当a?b?17.解:(1)因为数列?Sn?a1?为等比数列,所以?S2?a1???S1?a1??S3?a1?,即?2a1?a2??2a1?2a1?a2?a3?,2
2
设等比数列?an?的公比为q,因为a1?1,所以?2?q??22?q?q所以an?a1q
n?1
2?2?,解得q=
?
2或q?0(舍),?2n?1?n?N??,n-1
(2)由(1)得an=2所以bn?
?n?N?,111?11?
?????,log2an?1?log2an?3n?n?2?2?nn?2?
1??1??11??11?1??11???1
1????????????????????????2??n?1n?1??nn?2????3??24??35?
所以Tn?
1?311?31?11?32n?3
?????????,???
2?2n?1n?2?42?n?1n?2?42?n?1??n?2?x2y2218.解析:已知椭圆C:2?2?1(a?b?0)的离心率为,左、右焦点分别为F1,F2,过F2的ab2直线与C交于M,N两点,?MF1N的周长为42.(1)求椭圆C的标准方程;(2)过M作与y轴垂直的直线l,点K?明理由.解析:(1)三角形MF1N的周长4a?42,?3?
,0?,试问直线NK与直线l交点的横坐标是否为定值?请说2??
c2,b2?a2?c2,可得:a2?2,b2?1,?
a2x2所以椭圆的方程为:?y2?1;2(2)设M?x1,y1?,N?x2,y2?,5由(1)得F2?1,0?,设直线MN的直线为:x?my?1,?x?my?1?22
2?my?2my?1?0,联立直线与椭圆的方程:?x2,解得:2??y?1?2??∴y1?y2?
1?2m
yy??,,12
2?m22?m2y?
3??
x??,令y?y,可得:3?21??x2?2y2直线NK的方程:3?1?3???m1?mmy1?x2??y1?my2???y2?y?y?2y??2y2??1222223222?????x???2?m2?2?m2?m?2y22y2y2y2
所以直线NK与直线l交点的横坐标为定值2.6