(2)线粒体结构电镜下观察线粒体由内外两层膜所包围。外膜磷脂含量较高,透性较强,有利于线粒体内外物质交换。内膜透性较差,在不同部位向内折叠形成嵴。嵴之间的内部空隙叫嵴间腔,里面充满基质,基质中含有蛋白质和少量DNA。内外膜之间的间隙叫膜间腔。里面充满液体。线粒体的内外膜上都附有酶系颗粒,在外膜上牢固附着的是柠檬酸循环所必需的酶系颗粒。柠檬酸循环所产生的NADPH(还原性H)通过膜进入线粒体,使ADP转变成ATP。在内膜内侧附着有许多带柄小颗粒,这种颗粒就是可溶性三磷酸腺苷。
(3)线粒体功能线粒体是细胞呼吸中心。它通过有呼吸作用的多种酶系颗粒,能将细胞质中的糖酵解,产生丙酮酸,再进一步氧化产生能量,并将能量贮藏在ATP高能磷酸键中。ATP通过膜上的小孔向外扩散到细胞质中,供细胞其他生理活动时能量的需要。
3.质体
质体是绿色植物细胞所特有的细胞器。根据颜色和功能的不同,成熟的质体分白色体、有色体和叶绿体三类。
(1)白色体(也叫无色体) 因所在的组织和功能的不同可分为造粉质体、造蛋白质体和造油体。
(2)有色体 有色体内含有叶黄素和胡萝卜素,呈红色或橙黄色。它存在于花瓣和果实中,其主要功能是积累淀粉和脂类。
(3)叶绿体主要存在于叶肉细胞和幼茎皮层细胞内,是光合作用的场所。叶绿体由内外两层膜包围,叶绿体膜能控制代谢物质进出叶绿体。膜内淡黄色、半流动状态的物质叫基质,主要是可溶性蛋白质(酶)和其他代谢物质。基质中悬浮着浓绿色圆柱状颗粒叫基粒。每个基粒由两个以上类囊体重叠而成基粒片层,类囊体由自身闭合的双层薄膜组成。有些类囊体和基粒中的基粒片层横向连接,使基粒跟基粒相连,这种类囊体叫做基质片层。叶绿体的光合色素主要集中在基粒中,类囊体的内膜和外膜上分别附有几十种与光合作用有关的酶。光合作用的光反应在类囊体薄膜上进行,合成有机物的暗反应,在叶绿体基质中进行。
4.内质网和高尔基体
内质网是由单层膜组成,有两种类型:粗糙内质网和光滑内质网。粗糙内质网呈扁平囊状,内质网膜的外面附有核糖核蛋白体颗粒,是细胞内合成蛋白质的主要部位。粗糙内质网常与核膜的外膜相连。光滑内质网呈管状,膜上没有颗粒,常与有分泌功能的高尔基体相连。光滑内质网与脂类物质的合成、糖元等的代谢有关。
高尔基体是由双层膜、表面光滑的大扁囊和小囊泡构成,多数扁囊和囊泡集合在一起,又叫高尔基复合体。在植物细胞内,有高尔基体合成的果胶、半纤维和木质素等物质,这些物质参与细胞壁的形成。在动物细胞内,高尔基体参与蛋白质的分泌。
在细胞生物学中,把核被膜、内质网、高尔基体、小泡和液泡等看成是在功能上连续统一的细胞内膜,被称为内膜系统。
5.液泡系
液泡系是指由内膜所包围的小泡和液泡,除线粒体和质体外,都属于液泡系。液泡的类型可分为以下几种:①高尔基液泡,由高尔基体成熟面高尔基地边缘形成的小泡,其中含有水解酶等。②溶酶体,由内质网形成,其中含有水解酶。③圆球体,为植物细胞所特有,相当于溶酶体,也是由内质网形成。④微体,按其中所含的酶来确定它们的性质。⑤自噬小体,由一层膜将一小部分细胞质包围而成,其中被消化的物质是细胞质内含有的各种组成,如线粒体、内质网的碎片等。⑥吞噬泡,由质膜的内陷作用吞噬了营养颗粒而成。⑦胞饮液泡,由质膜的内陷作用吞噬了一些溶液或营养液而成。⑧糊粉粒,在植物的种子中产生的一种特异的液泡,其中贮有蛋白质(多数是酶),起源于内质网。⑨收缩泡,为原生动物所含有的液泡,具有伸缩性,收缩时可把废液和过量的
生物奥赛讲义
第 16 页 共 81 页
生物奥赛辅导资料
水分排出体外。动、植物液泡都是由一层单位膜包围而成。 植物细胞中的液泡是植物细胞显著特征之一。液泡里有细胞液,细胞液主要成分是水,另外含有糖类、丹宁、有机酸、植物碱、色素、盐类等。植物细胞的液泡既是细胞营养物质的贮藏器,也是废物的排泄器。
溶酶体是溶解或消化小体,内含各种水解酶,在动植物细胞中都含有这类细胞器。细菌内没有发现溶酶体。溶酶体的功能有三个方面:正常消化作用、自体吞噬、细胞自溶作用。
微体有两种类型:过氧化物酶体和乙醛酸循环体。前者存在于动、植物细胞内,而后者仅存在于植物细胞内。
植物细胞内的圆球体和糊粉粒都含有水解酶,具有动物溶酶体同样的功能。
6.核糖核蛋白体
核糖体颗粒存在于所有类型的活细胞内,游离在细胞质中或附着在粗糙型内质网上,快速增殖的细胞中含量更多。根据核糖体的沉降系数,把不同来源的核糖体分为70S型(具有30S和50S两个亚单位)和80S型(具有40S和60S两个亚单位)两大类。80S分布在真核细胞的细胞质中,而70S则存在于原核细胞与叶绿体内。
聚核糖体是蛋白质合成的主要场所。 7.中心体
中心体是动物细胞和低等植物细胞特有的细胞器。它包括两部分:中央部分有中心粒,周围的致密物质叫中心球。它存在的位置比较接近细胞中央,在核的一侧,所以叫中心体。在电镜下看到,中心粒由27条很短的微管组成,从横切面看到是由9个三体微管盘绕成的环状结构。三体微管之间和它的周围有质地比较致密的细粒状物质。中心粒对细胞分裂期纺锤丝的排列方向和染色体的移动方向,起着重要作用。
8.微管和微丝
微管是细胞的骨骼,而微丝则是细胞的肌肉系统。
微管含有微管蛋白,微丝含有的分子与肌肉中的肌动蛋白、肌球蛋白和原肌球蛋白相同,也有像肌肉一样的收缩功能。
微管的功能有:支架作用、细胞的运动、细胞分裂、细胞内运输、细胞壁的结构等。微管可以单体到多聚体集合成完整的管子,但经低温、高压、秋水仙素和长春花碱等处理后就会破坏,使细胞变形,也不能运动。
微丝担负着细胞内运输、细胞质运动、细胞的移动和肌肉的收缩等功能。
三、细胞核
细胞核是细胞内储存、复制和转录遗传信息的主要场所。在真核细胞中,除高等植物成熟的筛管以及哺乳类成熟的红细胞外,都有细胞核。细胞核的核膜由两层膜组成,包在核之外。核膜上有许多穿孔,称核孔,全部核孔占膜面积的8%以上。核孔是细胞核和细胞质进行物质交换的通道。核液充满在核膜内,是以核蛋白为主的胶态物质,染色质和核仁悬浮在其中。当这些基质呈液体状态(溶胶)时叫核液,呈半固体状态(凝胶)时叫核质。核仁主要由蛋白质和RNA组成,它与合成核糖体RNA有关。染色质是细胞核的重要成分,是真核细胞间期核中DNA、组蛋白、非组蛋白性蛋白质以及少量RNA所组成的一串念珠状的复合体,是能被碱性染料染色的物质。
第三节 细胞周期和细胞分裂
【知识概要】 一、细胞周期 1.概念
细胞周期是指细胞一次分裂结束开始生长,到下一次分裂完成所经历的过程。
生物奥赛讲义
第 17 页 共 81 页
生物奥赛辅导资料
2.细胞周期分四个时期 ①从有丝分裂完成到DNA复制前的这段间隙时间叫G1期。②DNA复制的时期叫S期。在S期,DNA的含量增加一倍。③从DNA复制完成到有丝分裂开始,这段时间叫G2期,细胞分裂期的开始,标志着G2期的结束。④从细胞分裂开始到结束,也就是染色体的凝缩、分离到平均分配到两个子细胞为止,叫M期。M期包括前、中、后、末四个时期。
在细胞生长繁殖过程中,有的细胞在前一周期结束后,不再进入下一周期,而是退出了细胞周期,细胞这时所处的时期叫G0期。G0期的细胞不合成DNA,也不发生分裂,而处于静止状态。
二、细胞分裂
细胞分裂有三种方式:即无丝分裂、有丝分裂和减数分裂。
无丝分裂又称直接分裂。分裂时无染色体出现,不形成纺锤体,也无核膜、核仁的消失。无丝分裂过程简单,遗传物质也不能平均分配,但能保持亲代个体的遗传性。
有丝分裂是真核生物细胞分裂的基本形式,也称间接分裂。在分裂过程中出现由许多级锤丝构成的纺锤体,经复制后的染色质集缩成棒状的染色体,并平均分配到子细胞中。细胞有丝分裂是一个连续的过程,为研究方便,按照各时期的特点,人们将有丝分裂分为间期和分裂期。分裂期又包括前期、中期、后期和末期。
减数分裂是以有性方式繁殖的动、植物,在形成生殖细胞时发生的分裂。减数分裂有三种类型:合子减数分裂、配子减数分裂、居间减数分裂。
有丝分裂和减数分裂的区别比较 有丝分裂 减数分裂 形成体细胞分裂的形成生殖细胞分裂的方式 方式 分裂过程是一次细分裂过程是两次连续的细胞胞分裂 配对联会 (2n→2n) 体细胞 【知识概要】
一、细胞的分化与衰老 细胞通过分裂在形态、功能和蛋白质合成等方面发生稳定差异的过程叫细胞分化。细胞分化的基础是核基因的选择性表达,它需要有细胞质的协调作用。细胞质的不均匀分布,决定着后代细胞的分化方向,也
生物奥赛讲义
第 18 页 共 81 页
生物奥赛辅导资料
分裂 和交换,形成四分体 (2n→n) 同源染色体不发生同源染色体配对、联会、交叉染色体数目不减半第一次分裂染色体数目减半分裂结果形成两个分裂结果形成四个生殖细胞 第四节 细胞的分化及其他 决定着成体细胞的分化方向。 衰老的细胞一般特征是:①原生质减少;②水分减少;③核外染色物质减少;④细胞核与细胞质的比率缩小;⑤细胞核固缩;⑥色素生成;⑦酶的活性变化;⑧核酸与蛋白质的变化。
二、细胞的全能性
细胞全能性包含以下两方面的含义:①有些动物细胞的胚胎早期分裂球(2—4细胞期),经人工分离后,能各自单独发育为完整的,但体积相应减小的胚胎;②植物的体细胞在离体培养下能再生成完整的植株。
三、细胞的癌变
由生物体正常细胞转变成的不受控制而恶性增殖的细胞叫做癌细胞。
癌细胞具有无限分裂的能力,细胞癌变后,细胞膜表面的抗原会发生变化。诱导正常细胞癌变的因素有化学的、物理的和生物的多方面因素。突变理论认为:癌是由体细胞突变而来。因为:①癌是由一个单细胞增殖的克隆引起的;②致癌剂多为突变剂;③生物年龄越大,自发癌的频率越高;④癌细胞的改变和细胞群体中细胞的进化一样。
四、细胞工程
应用细胞生物学的方法,按照人们预先的设计,有计划地改变或创造细胞遗传物质的技术,以及发展这种技术的研究领域,叫做细胞工程。细胞工程学可分为五个部分:基因工程学,染色体工程学,染色体组工程学,细胞质工程学,细胞并合工程学。
第四章 生物的新陈代谢
第一节 酶
【知识概要】
一、酶的概念
1.酶是生物催化剂
酶是由生物体活细胞所产生的一类具有生物催化作用的有机物。生物体内的新陈代谢过程包含着许多复杂而有规律的物质变化和能量变化,其中的许多化学反应都是在酶的催化作用下进行的。
2.酶的化学本质是蛋白质
酶具有一般蛋白质的理化性质。从酶的化学组成来看,有简单蛋白和复合蛋白两类。属于简单蛋白的酶,只含有蛋白质;属于复合蛋白的酶分子中,除了蛋白质外,还有非蛋白质的小分子物质,前者称酶蛋白,后者称辅助因子,可分为辅酶和辅基两类。近些年来发现,绝大多数酶是蛋白质,有的酶是RNA。
二、酶催化作用的特点
酶与一般催化剂一样,能降低化学反应所需的活化能,使反应速度加快,反应完成时,酶本身的化学性质并不发生变化。
酶与一般非生物催化剂不同的特点是:1.高效性;2.专一性;3.需要适宜的条件。
三、酶催化作用的机理
现在认为,酶进行催化作用时,首先要和底物结合,形成一中间络合物,它很容易转变为产物和酶;该过程可表示为:S(底物)+E(酶)
??E(酶)+P(反应产物)→SE(中间络合物)???。酶分子中直接与
底物结合并与酶催化作用直接有关的部位称为“活性(力)中心’。一般认为,酶的活性中心有两个功能部位:结合部位和催化部位。
四、影响酶催化作用的因素
影响酶催化作用的因素有底物浓度、温度、pH、酶浓度、激活剂和抑制剂等。
迅速分解生物奥赛辅导资料
生物奥赛讲义 第 19 页 共 81 页
【知识概要】
一、根
根据发生的部位,根分成主根、侧根和不定根三种。植物地下部分所有根的总和叫做根系,分为直根系和须根系两种。
从根的顶端到着生根毛的部分叫做根尖,它是根生长、分化、吸收最活跃的部位。从根尖的顶端起,依次分成根冠、分生区(生长点)、伸长区和成熟区(根毛区)四部分。
根的初生结构由外向内分成表皮、皮层和维管柱(中柱)。皮层的最内层细胞叫做内皮层,这层细胞的径向壁和横壁上形成栓质化的带状加厚结构,叫做凯氏带,它具有加强控制根的物质转移的作用。维管柱由中柱鞘、初生木质部和初生韧皮部三部分组成。双子叶植物的根可以进行次生生长,由形成层细胞进行细胞分裂,向内形成次生木质部,向外形成次生韧皮部。
根的生理功能是吸收、支持、合成和贮藏,有些植物的根还有营养繁殖的作用。
二、茎
茎的形态特征是有节和节间,有芽,落叶后节上有叶痕。茎因生长习性的不同,可以分为直立茎、攀援茎、缠绕茎和匍匐茎四类。
茎的主干由种子的胚芽发育而成,侧枝由主干上的芽发育而成。因此,芽是一个枝条的雏型,将植物的叶芽纵切,从上到下依次为生长点、叶原基、幼叶、腋芽原基。
双子叶植物茎的初生结构分为表皮、皮层和维管柱。维管柱由维管束、髓和髓射线三部分组成。维管束是初生韧皮部、形成层和初生木质部组成的束状结构。双子叶植物茎的维管束常排列成筒状。茎的次生结构是由形成层的活动而加粗的部分。由于形成层的活动受四季气候影响而在多年生木质部横切面上出现年轮。
一般单子叶植物的茎只有初生结构,由表皮、维管束和薄壁组织组成。表皮下有机械组织,起支持作用,其细胞常含叶绿体。维管束是分散的,有的植物茎中空成髓腔。
茎的生理功能主要是运输水分、无机盐类和有机营养物质,同时又能支持技、叶、花和果实展向空中。此外还有贮藏和营养繁殖的作用。
三、叶
植物的叶一般由叶片、叶柄和托叶三部分组成。叶片内分布着叶脉,叶脉有网状脉和平行脉之分。叶柄有支持和输导作用。
叶片的结构通常分三部分:表皮、叶肉和叶脉。表在分为上表皮和下表皮。表皮细胞之间有许多气孔,由两个保卫细胞围成,保卫细胞控制着气孔的开闭。气孔是叶蒸腾水分和气体进出的通道。叶肉由含许多叶绿体的薄壁细胞组成,分为栅栏和海绵组织,大中型叶脉由维管束和机械组织构成,木质部在上,韧皮部在下。叶脉越细,结构越简单。
四、根、茎、叶的变态
根的变态包括贮藏根(有肉质直根、块根)、气生根(有支柱根、呼吸根、攀援根等)、寄生根(吸器);茎的变态包括地下茎的变态(有块茎、鳞茎、球茎、根状茎等)、地上茎的变态(有茎卷须、枝刺、叶状枝、肉质茎等);叶的变态,有苞叶、叶卷须、鳞叶、叶刺、捕虫叶等。
第三节 植物的光合作用
【知识概要】
一、光合作用的概念及其重要意义
光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并且释放出氧的过程。光合作用的重要意义是把无机物转变成有机物,转化并储存太阳能,使大气中的氧和二氧化
生物奥赛讲义
第 20 页 共 81 页
第二节 植物的营养器官 生物奥赛辅导资料