好文档 - 专业文书写作范文服务资料分享网站

医学遗传学习题附答案第章线粒体遗传病

天下 分享 时间: 加入收藏 我要投稿 点赞

1. 线粒体病(mitchondrial disease) 2.异质性(heteroplasmy) 3.阈值效应(threshould effect) 4.D-loop

5.母系遗传(maternal inheritance) 6. 同质性(homeoplasmy)

7.复制分离(replicative segregation) 8.遗传瓶颈(genetic bottleneck) 9.多质性(multiplasmy) (五)问答题

1.什么是mtDNA?它有什么特性? 2.说明线粒体的遗传规律。

3.简述nDNA在线粒体遗传中的作用。 4.简述人类线粒体基因组的结构和功能。 5.mtDNA编码区内的基因排列有何特点? 6.mtDNA非编码区有何功能? 7.D环区的多态性研究有何意义?

8.与核基因转录比较,mtDNA的转录有何特点? 9.简述mtDNA的复制过程。

10.哪些因素与线粒体病的外显率、表现度有关? 11.如何确定一个mtDNA是否为致病性突变? 12.mtDNA基因突变的后果和主要突变类型是什么? 13.mtDNA基因点突变会产生什么效应?

14.mtDNA的大片段重组有哪些类型?产生何种效应? 15.异质性细胞如何发生漂变?

16.简述mtDNA基因突变率高的分子机制。 17.什么是mtDNA的复制分离?

三、参考答案

(一)A型选择题

5. A 8. B 9. A

(三)是非判断题 1.对。 2.对。 3.对。

4.错。复合物Ⅴ的质子转位。

5.错。母系遗传是线粒体DNA的遗传特点之一。 6.错。mtDNA进行复制,受核DNA影响。 7.错。mtDNA的遗传密码与nDNA不完全相同。 8.对。 9.对。 10.对。 11.对

12.错。KSS和CPEO主要是由于mtDNA的缺失引起的

13.错。“同质性”是指一个细胞或组织中所有的线粒体或都是野生型序列,或都是突变型序列。

14. 错。人的卵母细胞成熟时,其中的线粒体数量最多不超过100个。 15. 对。 (四)名词解释题

1.广义的线粒体病指以线粒体功能异常为病因学核心的一大类疾病,包括线粒体基因组、核基因组缺陷以及二者之间的通讯缺陷。狭义的线粒体病仅指线粒体DNA突变所致的线粒体功能异常,为通常所指的线粒体病。线粒体DNA为呼吸链的部分肽链及线粒体蛋白质合成系统rRNA和tRNA编码,这些线粒体基因突变所导致的疾病也称为线粒体遗传病。

2.由于mtDNA发生突变,导致一个细胞内同时存在野生型mtDNA和突变型mtDNA。 3.在特定组织中,突变型mtDNA积累到一定程度,超过阈值时,能量的产生就会急剧地降到正常的细胞、组织和器官的功能最低需求量以下,引起某些器官或组织功能异常。

4. D环区,又称非编码区或控制区,与mtDNA的复制及转录有关,包含H链复制的起始点(OH)、H链和L链转录的启动子(PH1、PH2、PL)以及4个保守序列。

5.即母亲将mtDNA传递给她的儿子和女儿,但只有女儿能将其mtDNA传递给后代。

6.同一组织或细胞中的mtDNA分子都是相同的,称为同质性。

7.细胞分裂时,突变型和野生型mtDNA发生分离,随机地分配到子细胞中,使子细胞拥有不同比例的突变型mtDNA分子,这种随机分配导致mtDNA异质性变化的过程称为复制分离。

8.异质性在亲子代之间的传递非常复杂,人类的每个卵细胞中大约有10万个mtDNA,但只有随机的一小部分(2~200个)可以进入成熟的卵细胞传给子代,这种卵细胞形成期mtDNA数量剧减的过程称“遗传瓶颈”。

9.人体不同类型的细胞含线粒体数目不同,通常有成百上千个,而每个线粒体中有2~10个mtDNA分子,由于线粒体的大量中性突变,因此,绝大多数细胞中有多种mtDNA拷贝,其拷贝数存在器官组织的差异性。

(五)问答题

1.①线粒体DNA约,为一种双链环状DNA,由一条重链和一条轻链组成,含37个基因:22个tRNA基因、2个rRNA基因、13个mRNA基因;②与nDNA相比,具有高度简洁型、高突变率、母系遗传、异质性等特点。

2.⑴高度简洁性:基因内无内含子,整个DNA分子中很少非编码顺序。 ⑵高突变率:①mtDNA是裸露的,无组蛋白保护;②mtDNA复制时,多核苷酸

链长时间处于单链状态,分子不稳定,易发生突变;③线粒体中缺少DNA修复系统。

⑶异质性:同一个细胞中野生型mtDNA和突变型mtDNA共存。

⑷阈值效应:细胞中突变型mtDNA达到一定数量,能量代谢不足以满足细胞

生命活动需要时,才会表现出临床症状。

⑸母系遗传:精子中线粒体数量很少,受精卵中的线粒体几乎全部来自卵子,

因此,只有母亲的突变线粒体可以传给后代,临床上表现为母亲发病,子代可能发病,父亲发病,子代正常。

⑹与nDNA的遗传密码不完全相同。

⑺mtDNA的转录过程类似于原核生物,即在有丝分裂和减数分裂期间都要经过

复制分离。

3.尽管线粒体中存在DNA和蛋白质合成系统,但是,线粒体只能合成一小部分线粒体蛋白,呼吸链-氧化磷酸化系统的80多种蛋白质亚基中,mtDNA仅编码13种,绝大部分蛋白质亚基和其他维持线粒体结构和功能的蛋白质都依赖于核nDNA编码,在细胞质中合成后,经特定转运方式进入线粒体。此外,mtDNA基因的表达受nDNA的制约,mtDNA自我复制、转录需要由核nDNA编码的酶蛋白参与,线粒体的遗传系

统只有靠核基因所合成的大量蛋白质的协调才能发挥作用,所以mtDNA基因的表达受核DNA的制约。

4.线粒体基因组是人类基因组的重要组成部分,全长16569bp,不与组蛋白结合,呈裸露闭环双链状,根据其转录产物在CsCl中密度的不同分为重链和轻链,重链(H链)富含鸟嘌呤,轻链(L链)富含胞嘧啶。mtDNA编码线粒体中部分蛋白质和全部的tRNA、rRNA,能够独立进行复制、转录和翻译,但所含信息量小。mtDNA分为编码区与非编码区,编码区包括37个基因:2个基因编码线粒体核糖体的rRNA(16S、12S),22个基因编码线粒体中的tRNA,13个基因编码与线粒体氧化磷酸化(OXPHOS)有关的蛋白质。非编码区与mtDNA的复制及转录有关,包含H链复制的起始点(OH)、H链和L链转录的启动子(PH1、PH2、PL)以及4个保守序列。

5.各基因之间排列极为紧凑,部分区域还出现重叠,即前一个基因的最后一段碱基与下一个基因的第一段碱基相衔接,利用率极高。无启动子和内含子,缺少终止密码子,仅以U或UA结尾。基因间隔区只有87bp,占mtDNA总长度的的%。因而,mtDNA任何区域的突变都可能导致线粒体氧化磷酸化功能的病理性改变。

6.mtDNA非编码区与mtDNA的复制及转录有关,包含H链复制的起始点(OH)、H链和L链转录的启动子(PH1、PH2、PL)以及4个保守序列。

7.D环区是线粒体基因组中进化速度最快的DNA序列,极少有同源性,而且参与的碱基数目不等,其16024~16365nt及73~340nt两个区域为多态性高发区,分别称为高变区Ⅰ(hypervariable regionⅠ,HVⅠ)及高变区Ⅱ(hypervariable regionⅡ,HVⅡ),这两个区域的高度多态性导致了个体间的高度差异,适用于群体遗传学研究,如生物进化、种族迁移、亲缘关系鉴定等。

8.①mtDNA两条链均有编码功能:重链编码2个rRNA、12个mRNA和14个tRNA;轻链编码1个mRNA和8个tRNA;②两条链从D-环区的启动子处同时开始以相同速率转录,L链按顺时针方向转录,H链按逆时针方向转录;③mtDNA的基因之间无终止子,因此两条链各自产生一个巨大的多顺反子初级转录产物。H链还产生一个较短的、合成活跃的RNA转录产物,其中包含2个tRNA和2个mRNA;④tRNA基因通常位于mRNA基因和rRNA基因之间,每个tRNA基因的5′端与mRNA基因的3′端紧密相连,核酸酶准确识别初级转录产物中tRNA序列,并在tRNA两端剪切转录本,形成单基因的mRNA、tRNA和rRNA,剪切下来的mRNA无5′帽结构,在polyA聚合酶的作用下,在3′端合成一段polyA,成为成熟的mRNA。初级转录产物中无信息的片段被很快降解;⑤mtDNA的遗传密码与nDNA不完全相同:UGA编码色氨酸而非终止信号,AGA、

AGG是终止信号而非精氨酸,AUA编码甲硫氨酸兼启动信号,而不是异亮氨酸的密码子;⑥线粒体中的tRNA兼用性较强,其反密码子严格识别密码子的前两位碱基,但第3位碱基的识别有一定的自由度(称碱基摆动),可以识别4种碱基中的任何一种,因此,1个tRNA往往可识别几个密码子,22个tRNA便可识别线粒体mRNA的全部密码子。

9.mtDNA可进行半保留复制,其H链复制的起始点(OH)与L链复制起始点(OL)相隔2/3个mtDNA。复制起始于L链的转录启动子,首先以L链为模板合成一段RNA作为H链复制的引物,在DNA聚合酶作用下,复制一条互补的H链,取代亲代H链与L链互补。被置换的亲代H链保持单链状态,这段发生置换的区域称为置换环或D环,故此种DNA复制方式称D-环复制。随着新H链的合成,D环延伸,轻链复制起始点OL暴露,L链开始以被置换的亲代H链为模板沿逆时针方向复制。当H链合成结束时,L链只合成了1/3,此时mtDNA有两个环:一个是已完成复制的环状双链DNA,另一个是正在复制、有部分单链的DNA环。两条链的复制全部完成后,起始点的RNA引物被切除,缺口封闭,两条子代DNA分子分离。新合成的线粒体DNA是松弛型的,约需40分钟成为超螺旋状态。

10.①细胞中线粒体的异质性水平;②组织器官对能量的依赖程度;③能引起特定组织器官功能障碍的突变mtDNA的最少数量;④同一组织在不同功能状态对OXPHOS损伤的敏感性不同;⑤线粒体疾病的临床多样性也与发育阶段有关;⑥突变mtDNA随年龄增加在细胞中逐渐积累,因而线粒体疾病常表现为与年龄相关的渐进性加重。

11.确定一个mtDNA是否为致病性突变,有以下几个标准:①突变发生于高度保守的序列或发生突变的位点有明显的功能重要性;②该突变可引起呼吸链缺损;③正常人群中未发现该mtDNA突变类型,在来自不同家系但有类似表型的患者中发现相同的突变;④有异质性存在,而且异质性程度与疾病严重程度正相关。

12.mtDNA基因突变可影响OXPHOS功能,使ATP合成减少,一旦线粒体不能提供足够的能量则可引起细胞发生退变甚至坏死,导致一些组织和器官功能的减退,出现相应的临床症状。mtDNA突变类型主要包括点突变、大片段重组和mtDNA数量减少。

13.点突变发生的位置不同,所产生的效应也不同。已知的由mtDNA突变所引起的疾病中,2/3的点突变发生在与线粒体内蛋白质翻译有关的tRNA或rRNA基因上,使tRNA和rRNA的结构异常,普遍影响了mtDNA编码的全部多肽链的翻译过程,导致呼吸链中多种酶合成障碍;点突变发生于mRNA相关的基因上,可导致多肽链合成过

程中的错义突变,进而影响氧化磷酸化相关酶的结构及活性,使细胞氧化磷酸化功能下降。

14.mtDNA的大片段重组包括缺失和重复,以缺失较为常见。大片段的缺失往往涉及多个基因,可导致线粒体OXPHOS功能下降,产生的ATP减少,从而影响组织器官的功能。

15.在连续的分裂过程中,异质性细胞中突变型mtDNA和野生型mtDNA的比例会发生漂变,向同质性的方向发展。分裂旺盛的细胞(如血细胞)往往有排斥突变mtDNA的趋势,经无数次分裂后,细胞逐渐成为只有野生型mtDNA的同质性细胞。突变mtDNA具有复制优势,在分裂不旺盛的细胞(如肌细胞)中逐渐积累,形成只有突变型mtDNA的同质性细胞。漂变的结果,表型也随之发生改变。

16.①mtDNA中基因排列非常紧凑,任何mtDNA的突变都可能会影响到其基因组内的某一重要功能区域;②mtDNA是裸露的分子,不与组蛋白结合,缺乏组蛋白的保护;③mtDNA位于线粒体内膜附近,直接暴露于呼吸链代谢产生的超氧粒子和电子传递产生的羟自由基中,极易受氧化损伤。④mtDNA复制频率较高,复制时不对称。亲代H链被替换下来后,长时间处于单链状态,直至子代L链合成,而单链DNA可自发脱氨基,导致点突变;⑤缺乏有效的DNA损伤修复能力。

17.细胞分裂时,突变型和野生型mtDNA发生分离,随机地分配到子细胞中,使子细胞拥有不同比例的突变型mtDNA分子,这种随机分配导致mtDNA异质性变化的过程称为复制分离。

医学遗传学习题附答案第章线粒体遗传病

1.线粒体病(mitchondrialdisease)2.异质性(heteroplasmy)3.阈值效应(threshouldeffect)4.D-loop5.母系遗传(maternalinheritance)6.同质性(homeoplasmy)7.复制分离(replicativesegregation)8.遗传瓶颈(geneticbo
推荐度:
点击下载文档文档为doc格式
13b1t8j7sm0fvam2gyzr6h1tx45d76007lu
领取福利

微信扫码领取福利

微信扫码分享