好文档 - 专业文书写作范文服务资料分享网站

2017年高考理科数学新课标全国3卷 逐题解析

天下 分享 时间: 加入收藏 我要投稿 点赞

??4m2?16恒大于,y1?y2?2m,y1y2??4. uuruuurOA?OB?x1x2?y1y2

?(my1?2)(my2?2)

?(m2?1)y1y2?2m(y1?y2)?4

??4(m2?1)?2m(2m)?4?0 uuruuur∴OA?OB,即O在圆M上.

uuuruur⑵若圆M过点P,则AP?BP?0 (x1?4)(x2?4)?(y1?2)(y2?2)?0 (my1?2)(my2?2)?(y1?2)(y2?2)?0

(m2?1)y1y2?(2m?2)(y1?y2)?8?0

1化简得2m2?m?1?0解得m??或

21①当m??时,l:2x?y?4?0圆心为Q(x0,y0),

2y?y2119y0?1??,x0??y0?2?,

2224?9??1?半径r?|OQ|??????? ?4??2?921285则圆M:(x?)?(y?)?

4216②当m?1时,l:x?y?2?0圆心为Q(x0,y0),

y?y2y0?1?1,x0?y0?2?3,

2半径r?|OQ|?32?12 则圆M:(x?3)2?(y?1)2?10

21.(12分)已知函数f(x)?x?1?alnx.

(1)若f(x)≥0,求的值;

(2)设m为整数,且对于任意正整数,(1+11)(1+2)鬃?(1221)

ax?a则f?(x)?1??,且f(1)?0

xx当a≤0时,f??x??0,f?x?在?0,???上单调增,所以0?x?1时,f?x??0,

不满足题意; 当a?0时,

当0?x?a时,f?(x)?0,则f(x)在(0,a)上单调递减; 当x?a时,f?(x)?0,则f(x)在(a,??)上单调递增.

①若a?1,f(x)在(a,1)上单调递增∴当x?(a,1)时f(x)?f(1)?0矛盾 ②若a?1,f(x)在(1,a)上单调递减∴当x?(1,a)时f(x)?f(1)?0矛盾 ③若a?1,f(x)在(0,1)上单调递减,在(1,??)上单调递增∴f(x)≥f(1)?0满足题意

综上所述a?1.

⑵ 当a?1时f(x)?x?1?lnx≥0即lnx≤x?1

则有ln(x?1)≤x当且仅当x?0时等号成立

- 11 -

11,k?N* )?kk221111111一方面:ln(1?)?ln(1?2)?...?ln(1?n)??2?...?n?1?n?1,

2222222111即(1?)(1?2)...(1?n)?e.

222111111135另一方面:(1?)(1?2)...(1?n)?(1?)(1?2)(1?3)??2

22222264111当n≥3时,(1?)(1?2)...(1?n)?(2,e)

222111∵m?N*,(1?)(1?2)...(1?n)?m,

222∴m的最小值为.

∴ln(1?

22.选修4-4:坐标系与参数方程](10分)

?x???t,在直角坐标系xOy中,直线的参数方程为?(t为参数),直线l?的参数方程为

y?kt,??x????m,?(m为参数),设与l?的交点为P,当k变化时,P的轨迹为曲线C. ?my?,?k?(1)写出C的普通方程:

(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l?:?(cos??sin?)????,M为与C的交点,求M的极径. 【解析】⑴将参数方程转化为一般方程

l1:y?k?x?2? ……①

1l2:y??x?2? ……②

k①②消可得:x2?y2?4

即P的轨迹方程为x2?y2?4; ⑵将参数方程转化为一般方程

l3:x?y?2?0 ……③

??x?y?2?0 联立曲线C和?22x?y?4???32x???2 解得??y??2??2?x??cos?由?解得??5 ?y??sin?即M的极半径是5.

23.选修4-5:不等式选讲](10分)

已知函数f(x)?|x??|?|x??|. (1)求不等式f(x)??的解集;

(2)若不等式f(x)?x??x?m的解集非空,求m的取值范围.

- 12 -

??3,x≤?1?【解析】⑴f?x??|x?1|?|x?2|可等价为f?x???2x?1,?1?x?2.由f?x?≥1可得:

?3,x≥2?①当x≤?1时显然不满足题意;

②当?1?x?2时,2x?1≥1,解得x≥1;

③当x≥2时,f?x??3≥1恒成立.综上,f?x??1的解集为?x|x≥1?.

22⑵不等式f?x?≥x?x?m等价为f?x??x?x≥m,

2令g?x??f?x??x?x,则g?x?≥m解集非空只需要??g?x???max≥m.

??x2?x?3,x≤?1?2而g?x????x?3x?1,?1?x?2.

??x2?x?3,x≥2?①当x≤?1时,??g?x???max?g??1???3?1?1??5;

35?3??3?gx?g???3??1??②当?1?x?2时,?; ????????max2224????2③当x≥2时,??g?x???max?g?2???2?2?3?1. 综上,??g?x???max?

255,故m?. 44- 13 -

2017年高考理科数学新课标全国3卷 逐题解析

??4m2?16恒大于,y1?y2?2m,y1y2??4.uuruuurOA?OB?x1x2?y1y2?(my1?2)(my2?2)?(m2?1)y1y2?2m(y1?y2)?4??4(m2?1)?2m(2m)?4?0uuruuur∴OA?OB,即O在圆M上.uuuruur⑵若圆M过点P,则AP?BP?0(x1?4)(x2
推荐度:
点击下载文档文档为doc格式
134zv67kkq52amw9lhr375cln2z0an008hh
领取福利

微信扫码领取福利

微信扫码分享