数列的求和法(1)直接用等差、等比数列的求和公式求和;n(a1?an)n(n?1)?na1?d22(q?1)?na1?Sn??a1(1?qn)(q?1)??1?qSn?公比含字母时一定要讨论。①等差(比)数列前n项和公式:①1?2?3???n?②已知数列?an
;?,an?xn,(x≠0),sn数列的前n项和,则sn=(2)裂项相消法求和:把数列的通项拆成两项之差,正负相消剩下首尾若干项。111??n(n?1)nn?1常见拆项:11?11?????(2n?1)(2n?1)2?2n?12n?1?1?n(n?k)an?an?1n?k?n;;;?;如:①S?1111??????1?22?33?4n?(n?1)1111②S???????1?32?43?5n?(n?2)③若an?1n?n?1,则Sn?
例1:数列?an?满足:a1=1,an例2:数列?an?满足a1=8,a4①求数列?an?的通项公式;②设bn
?22n
,其前n项和为Sn,则Sn?
n(n?1)n?1
?2,且an?2?2an?1?an?0(n?N?)?
1
n(14?an)
(n?N?)求bn的前n项和Tn
(3)错位相减法求和:如?an?为等差数列,?bn?为等比数列,求a1b1?a2b2???anbn的和。如:求和:S?x?2x2?3x3???nxn例1、Sn
?n?(n?1)?2?(n?2)?22???2n?1的结果是(B.2n?1?n?2D.2n?1?n?2D)A.2n?1?n?2C.2n?n?2例2:求和:Sn
?
123n?2?3???naaaa
(4)倒序相加法:如:①求和:Sn?sin21??sin22??sin23??????sin288??sin289?(5)并项法:如:求S100?1?2?3?4???99?100
(6)分组求和:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。如:在数列{an}中,an?10?2n?1,求Sn,例1.已知数列?an?的前n项和n
Sn?1?3?5?7???(?1)n?1(2n?1)(n?N?),则S17?S23?S50?(C)A.90C.?10B.10D.22例2.数列2,
1111
2,3,4,?,n?n?1,?的前n项和为(2482
B.
n(n?1)1
?1?n
22n2?n?41D.?n?1
22
)(n?1)n1
?2?n
22n2?n?41C.?n?1
22A.
(7)其它求和法:如归纳猜想法等。六、数列问题的解题的策略:(1)分类讨论问题:①在等比数列中,用前n项和公式时,要对公比q进行讨论;只有q?1时才能用前n项和公式,q?1时S1?na1;②已知Sn求an时,要对n?1,n?2进行讨论;最后看a1满足不满足an(n?2),若满足an中的n扩展到N*,不满足分段写成an。(2)设项的技巧:①对于连续偶数项的等差数列,可设为?,a?3d,a?d,a?d,a?3d,?,公差为2d;对于连续奇数项的等差数列,可设为?,a?2d,a?d,a,a?d,a?2d,?,公差为d;2
②对于连续偶数项的等比数列,可设为?,a,a,aq,aq3,?,公比为q;q3q
对于连续奇数项的等比数列,可设为?,aa2,,a,aq,aq,?公比为q;2qq课堂演练
4x
1.设f(x)?x,则4?2
f(
1220072007)?f()???f()?2008200820082
2.已知数列?an?的等差数列,且①求数列的通项公式;②若数列?bn?满足bna1??1,S12?1861?()an,记数列?bn?的前n项和为Tn2B)巩固练习
1.等差数列共有2n+1项,所有奇数项之和为132,所有偶数项之和为120,则n等于(A.9B.10C.11D.122.设Sn是等差数列?an?的前n项和,若a55S?,则9?(a39S5
A)
A.1B.-1C.2D.123.在等比数列?an?中,Sn是前n项和,若a3
A.1B.-1C.3D.-3?2S2?1,a4?2S3?1,则公比q等于(C)4.已知数列?an?是等比数列,且Sm?10,S2m?30,则S3m?
70
5.已知正项数列?an?的前n项和为Sn,①求证:数列?an?是等差数列;②若bn1
Sn是与(an?1)2的等比中项,4
?an,数列?bn?的前n项和为Tn,求Tnn26.在数列?an?中a1?2,an?1?4an?3n?1,n?N??n?是等比数列。①证明数列?an②求数列?an?的前n项和Sn