【答案】C 【解析】C中
22.已知微分方程y''?5y'?ay?0的一个解为e2x,则常数a?( )
A.4
B.3
C.5
D.6
dydy?sinxdx. ?sinxcosy,分离变量,得
cosydx【答案】D
【解析】(e2x)??2e2x,(e2x)???4e2x,代入微分方程,得4e2x?5?2e2x?ae2x?0,a?6.
23.下列各组角中,可以作为向量的一组方向角的是( )
A.
???,,
446B.
???,, 432C.
???,, 434D.
???,, 433【答案】D
【解析】由于方向角?,?,?必须满足cos2??cos2??cos2??1,可以验证只有D正确.
?2z24.已知函数z?2x?3xy?y,则=( )
?x?y22 A.?2 B.2 C.6 D.3
【答案】D
?2z???z??z????3. 【解析】?4x?3y,
?x?y?y??x??x
25.某公司要用铁板做成一个容积为27m3的有盖长方体水箱,为使用料最省,则该水箱的最小表面积应为( )
A.54m3
B.27m3
C.9m3
D.6m3
【答案】A
【解析】设长方形的长宽分别为a、b,则高为2727?5454?S?2?ab????2ab??,
baba??27,于是,表面积ab54??S?2b??0??a?3??aa2令?,得?,且驻点唯一,由于实际问题最值一定存在,可知最小表面
b?3?S54???2a??0?b2??b积S?54m3.
26.已知平面闭区域D:1?x2?y2?16,则二重积分??3dxdy?( )
D A.45? B.45 C.48? D.48
【答案】A
22【解析】??3dxdy?3SD?3(??4???1)?45?.
D
27.已知??f(x,y)d???dx?D01x0f(x,y)dy,将积分次序改变,则??Df(x,y)d??( )
A.?0dy?y2f(x,y)dx C.?y2dy?0f(x,y)dx
1111B.?dy?001y211f(x,y)dx
D.?1dy?y2f(x,y)dx
【答案】A
【解析】??Df(x,y)d???0dy?y2f(x,y)dx.
28.已知L为连接(1,0)及(0,1)两点的直线段,则曲线积分?L(x?y)ds?( )
A.2
B.2
C.1
D.0
11【答案】B
【解析】由于直线段L的方程为x?y?1,故?(x?y)ds??1???1?dx?2.
L012
29.下列级数绝对收敛的是( )
A.?(?1)n?1?n1n B.?(?1)n?1?n?1n 3n?1C.?(?1)sinnn?1??n
D.?(?1)n?1?n?12x n!2【答案】B
n?1【解析】对于B项,un?(?1)un?1nlim,
32?1n??unn?1?nn?113?lim?lim??1,故?un收敛,
n??n??3nn3n?1n?13原级数绝对收敛.
30.已知级数??n,则下列结论正确的是( )
n?1?
?n?0,则??n收敛 A.若limx??n?1?B.若??n的部分和数列?Sn?有界,则??n收敛
n?1?n?1??C.若??n收敛,则??n绝对收敛
n?1?n?1??D.若??n发散,则??n也发散
n?1n?1【答案】C
【解析】A项中若?n?1,结论不成立;B项中若?n?(?1)n,结论不成立;D项中若n?n?(?1)n
1,结论不成立;由绝对收敛的定义知,C正确. n二、填空题(每小题2分,共20分)
31.已知函数f(x)?x?1,则f(x)的反函数y?________. 【答案】y?x?1
【解析】由y?x?1,得x?y?1,交换x,y的位置,得反函数为y?x?1,x?R.
32.极限lim【答案】0
n?1sinn2?1?________. 2n??3n?111?2n?12nnsinn2?1?0 sinn?1?lim【解析】lim2n??3n?1n??13?2n
?x?1,x?1f(x)?33.已知函数,则点x?1是f(x)的________间断点. ?1,x?1?【答案】可去
f(x)?lim?x?1??2,而f(1)?1,故x?1是f(x)的可去间断点. 【解析】limx?1x?1
34.已知函数f(x)?lnx为可导函数,则f(x)在点x?1.01处的近似值为________. 【答案】0.01
【解析】由f(x0??x)?f(x0)?f?(x0)?x,故f(1?0.01)?f(1)?f?(1)?0.01?0.01.
35.不定积分?cos(3x?2)dx?________. 1【答案】sin(3x?2)?C
3【解析】?cos(3x?2)dx?
11cos(3x?2)d(3x?2)?sin(3x?2)?C. ?33?x36.定积分?sindx?________.
02【答案】2 【解析】?0
37.已知函数z?ln(x2?y2),则全微分dz【答案】dx?dy
?z2x?z2y??【解析】,,则dz?xx2?y2?yx2?y2(1,1)??xxxxsindx?2?sind??2cos02222?0?2.
(1,1)?________.
?2xx2?y2(1,1)dx?2yx2?y2(1,1)dy?dx?dy.
38.与向量??3,4,1?平行的单位向量是________.
41???3,,【答案】??? ?262626??34141?????3,,??,,【解析】e??????.
9?16?19?16?19?16?1262626????
39.微分方程y'?ex?y的通解是________. 【答案】y?ln(ex?C)
dyex 【解析】?y,分离变量,得eydy?exdx,两边积分,得ey?ex?C,即通解为y?ln(ex?C).
dxe
40.幂级数?(2n?1)x的收敛半径R?________.
nn?1?【答案】1 【解析】R?limn??
三、计算题(每小题5分,共50分) 41.求极限lim(1?sinx).
x??1xan?12n?1?lim?1. n??2n?3an【答案】e
【解析】原式?lim(1?sinx)x??11?sinx?sinxx?ex??limsinx?1x?e.
42.已知函数f(x)为可导函数,且f(x)?0,求函数y?f(x)的导数.
【答案】f?(x)2f(x)
11f?(x)?2?f?(x)??y?f(x)??【解析】.
22f(x)
43.计算不定积分?xdx. x2?112【答案】ln(x?1)?C
2d?x2?1?11【解析】原式??2?ln(x2?1)?C. 2x?12
44.计算定积分?【答案】1 【解析】?
1010xexdx.
xexdx??tetdt??tdet?tet001110??etdt?1.
01