不等式、基本不等式与三角函数复习题一、单选题1.已知集合A??xA.?1,2?【答案】C【详解】?x?2?
?0?,B??x2x?1?3?则?CRA??B(?x?1?
)B.???,?2???1,2?C.???,?2???1,2?D.?1,2??(x?2)(x?1)?0x?2
?0得?由,∴-2£x<1,即A?[?2,1),又B?{x|x?2}?(??,2],x?1?0x?1?
∴eRA?(??,?2)?[1,??),(eRA)?B?(??,?2)?[1,2].故选:C.2.已知不等式ax2?bx?1?0的解集是??,??,则不等式x2?bx?a?0的解集是(23
?1?
1??
)A.???,?3????2,???C.???,2???3,???【答案】D【详解】B.??3,?2?D.?2,3?因为不等式ax2?bx?1?0的解集是??,??
23
?1?
1??
所以?
11
,?是方程ax2?bx?1?0的两个根23
111b?1??1?
????????所以由韦达定理得:,????
a23a?2??3?
解得a??6,b?5
所以不等式x2?bx?a?0即为x2?5x?6?0解得2?x?3故选:D3.若a?b?0,c?d?0,则一定有()A.ab
?cdB.ab?cdC.ab?dcD.ab?dc试卷第1页,总11页【答案】D【解析】本题主要考查不等关系.已知a?b?0,c?d?0,所以?选D
4.若x?0,y?0且A.6【答案】D【解析】试题分析:x?y??x?y??以最小值为165.函数y?sin?x?
ab11ab
???0,所以???,故?.故dcdcdc19
??1,则x?y的最小值是()xyB.12C.24D.16y9x?19?y9x
???10???10?29?16,当且仅当?时等号成立,所xyxy?xy?
?
?
π?π??cosx????的单调递减区间为(8?8??
B.?kπ?
)A.?kπ?
?
?
37?
π,kπ?π?,k?Z44?13?
π,kπ?π?,k?Z44?
?
?
37?
π,kπ?π?,k?Z88?183?
π?,k?Z8?
C.?kπ?【答案】B【详解】??
D.?kπ?π,kπ?
??
π?π?1?π???
y?sin?x??cos?x???sin?2x??,8?8?2?4???
由2kπ?ππ3π3π7π?2x??2kπ??x?kπ?,得kπ?,k?Z.242883
,则tan2?的值为(5C.?
故选:B.6.已知?是第二象限角,且sin(???)??A.)45B.?
237247D.?
249【答案】C【详解】由sin???????
33,得sin??.55试卷第2页,总11页因为?是第二象限角,所以cos???
tan??
sin?3
??.cos?4?
4
.5
3
2tan?2??24.tan2???
1?tan2?1?9716故选C.7.要得到函数y?A.向左平移C.向左平移【答案】A【详解】函数y?sin2x?3cos2x?2sin(2x?
3sin2x?cos2x的图象,只需要将函数y?sin2x?3cos2x的图象(B.向右平移)?
个单位4?
个单位4?个单位2
D.向右平移?个单位2
?),3
向左平移故选A.??个单位得到函数y?3sin2x?cos2x?2sin(2x?)的图象,648.已知函数y?2sin?2x?分别为x1,x2,则x1?x2?(A.?
?
3???3?0?x???4??4)?
?的图像与一条平行于x轴的直线有两个交点,其横坐标?
3?4
B.2?3C.?3D.?6【答案】A【详解】函数y?2sin?2x?
??
3???3?0?x???4??4?
?的图像如图,?
试卷第3页,总11页对称轴方程为2x?
3????k?(k?Z),42?x??
?k??(k?Z),82
3?3?,?x?,48
3?对称,8又?0?x?
由图可得x1与x2关于x?
?x1?x2?2?
故选:A9.已知sin?A.3?3??84
3????4???????,则cos?????(5?6??3?
B.)4
535
C.?
45
D.-
35
【答案】B【详解】3???3?4??
cos?????cos(?(??)]??sin(??)?.2665?3?
故选:B.10.已知a>0,b>0,a,b的等比中项为2,则a+b+b+a的最小值为(A.3【答案】C【详解】B.4C.511)D.42∵a+b+b+a=(a+b)+11a+bab=(a+b)(1+1ab)=(a+b)≥?2ab=5,4455等号成立当且仅当a=b=2,∴原式的最小值为5.试卷第4页,总11页π???π?fx?2sin?x?11.若函数????在区间?0,?上存在最小值-2.则非零实数?的取值范围是(6???3?A.???,?1?【答案】C【详解】当??0时,?x?
B.?5,???C.???,?1???5,???D.???,?1???2,???)π?πππ?
???,???.6?636?
π???π??函数f?x??2sin??x??在区间?0,?上存在最小值-2,6???3?ππ3π
????,可得??5;362当??0时,?x?
π?πππ?
????,??,6?366?
π???π??函数f?x??2sin??x??在区间?0,?上存在最小值-2,6???3?πππ
?????,可得???1.362综上所述,非零实数?的取值范围是???,?1???5,???.故选:C.12.设函数f?x??ax?2x?2,对于满足1?x?4的一切x值都有f?x??0,则实数a的取值范围为2
()B.A.a?1【答案】D【解析】1
?a?12C.a?
12D.a?
12?满足1?x?4的一切x值,都有f?x??ax2?2x?2?0恒成立,可知a?0,?a?
2?x?1?x2?1?11?2?11
?2??????,满足1?x?4的一切x值恒成立,???1,4x??4?x2???
?1?11?2??1?1?1?
?2????????0,?,实数a的取值范围是?,???,实数a的取值范围为a?,故选D.2?2??4?x2????2??
二、填空题13.若x?1,则2x?
91
?的最小值是______.x?1x?1试卷第5页,总11页