A.13岁,14岁 B.14岁,14岁 C.14岁,13岁 D.14岁,15岁
【分析】首先找出这组数据中出现次数最多的数,则它就是这18名队员年龄的众数;然后根据这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,判断出这18名队员年龄的中位数是多少即可.
【解答】解:∵济南某中学足球队的18名队员中,14岁的最多,有6人, ∴这18名队员年龄的众数是14岁;
∵18÷2=9,第9名和第10名的成绩是中间两个数, ∵这组数据的中间两个数分别是14岁、14岁, ∴这18名队员年龄的中位数是: (14+14)÷2 =28÷2 =14(岁) 综上,可得
这18名队员年龄的众数是14岁,中位数是14岁. 故选:B.
【点评】(1)此题主要考查了众数的含义和求法,要熟练掌握,解答此题的关键是要明确:①一组数据中出现次数最多的数据叫做众数.②求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据. (2)此题还考查了中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据按照从小到大(或从大到小)的顺序排列,①如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.②如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
9.(3分)如图,在平面直角坐标系中,△ABC的顶点都在方格纸的格点上,如果将△ABC先向右平移4个单位长度,再向下平移1个单位长度,得到△A1B1C1,那么点A的对应点A1的坐标为( )
第11页(共31页)
A.(4,3)
B.(2,4)
C.(3,1)
D.(2,5)
【分析】根据平移规律横坐标,右移加,左移减;纵坐标,上移加,下移减进行计算即可.
【解答】解:由坐标系可得A(﹣2,6),将△ABC先向右平移4个单位长度,在向下平移1个单位长度,点A的对应点A1的坐标为(﹣2+4,6﹣1), 即(2,5), 故选:D.
【点评】此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握点的坐标的变化规律. 10.(3分)化简A.m+3
﹣
的结果是( ) B.m﹣3
C.
D.
【分析】原式利用同分母分式的减法法则计算,约分即可得到结果. 【解答】解:原式=故选:A.
【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.
11.(3分)如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是( )
=
=m+3.
A.x>﹣2
B.x>0
C.x>1
第12页(共31页)
D.x<1
【分析】观察函数图象得到当x>1时,函数y=x+b的图象都在y=kx+4的图象上方,所以关于x的不等式x+b>kx+4的解集为x>1. 【解答】解:当x>1时,x+b>kx+4, 即不等式x+b>kx+4的解集为x>1. 故选:C.
【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
12.(3分)将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3,则原铁皮的边长为( ) A.10cm
B.13cm
C.14cm
D.16cm
【分析】设正方形铁皮的边长应是x厘米,则做成没有盖的长方体盒子的长、宽为(x﹣3×2)厘米,高为3厘米,根据长方体的体积计算公式列方程解答即可.
【解答】解:正方形铁皮的边长应是x厘米,则没有盖的长方体盒子的长、宽为(x﹣3×2)厘米,高为3厘米,根据题意列方程得, (x﹣3×2)(x﹣3×2)×3=300, 解得x1=16,x2=﹣4(不合题意,舍去); 答:正方形铁皮的边长应是16厘米. 故选:D.
【点评】此题主要考查长方体的体积计算公式:长方体的体积=长×宽×高,以及平面图形折成立体图形后各部分之间的关系.
13.(3分)如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点.若AM=2,则线段ON的长为( )
A.
B.
C.1
D.
【分析】作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH为等
第13页(共31页)
腰直角三角形,所以AH=MH=则AB=2+OC=AC=
AM=,再根据角平分线性质得BM=MH=
AB=2
+2
,
,于是利用正方形的性质得到AC=+1,所以CH=AC﹣AH=2+
,然后证明△CON∽△CHM,再利用相
似比可计算出ON的长.
【解答】解:作MH⊥AC于H,如图, ∵四边形ABCD为正方形, ∴∠MAH=45°,
∴△AMH为等腰直角三角形, ∴AH=MH=
AM=
×2=
,
∵CM平分∠ACB, ∴BM=MH=∴AB=2+∴AC=
, AB=
(2+
)=2
+2,
+2﹣
=2+
,
,
∴OC=AC=∵BD⊥AC, ∴ON∥MH,
+1,CH=AC﹣AH=2
∴△CON∽△CHM, ∴
=
,即
=
,
∴ON=1. 故选:C.
【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和正方形的性质.
第14页(共31页)
14.(3分)在平面直角坐标系中有三个点A(1,﹣1)、B(﹣1,﹣1)、C(0,1),点P(0,2)关于A的对称点为P1,P1关于B的对称点P2,P2关于C的对称点为P3,按此规律继续以A、B、C为对称中心重复前面的操作,依次得到P4,P5,P6,…,则点P2015的坐标是( ) A.(0,0)
B.(0,2)
C.(2,﹣4)
D.(﹣4,2)
【分析】设P1(x,y),再根据中点的坐标特点求出x、y的值,找出规律即可得出结论. 【解答】解:设P1(x,y),
∵点A(1,﹣1)、B(﹣1,﹣1)、C(0,1),点P(0,2)关于A的对称点为P1,P1关于B的对称点P2, ∴=1,
=﹣1,解得x=2,y=﹣4,
∴P1(2,﹣4).
同理可得,P1(2,﹣4),P2(﹣4,2),P3(4,0),P4(﹣2,﹣2),P5(0,0),P6(0,2),P7(2,﹣4),…,…, ∴每6个数循环一次. ∵
=335…5,
∴点P2015的坐标是(0,0). 故选:A.
【点评】本题考查的是点的坐标,根据题意找出规律是解答此题的关键.
15.(3分)如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是( )
A.﹣2<m<
B.﹣3<m<﹣
C.﹣3<m<﹣2
D.﹣3<m<﹣
【分析】首先求出点A和点B的坐标,然后求出C2解析式,分别求出直线y=x+m与抛物线C2相切时m的值以及直线y=x+m过点B时m的值,结合图形即可得到答案. 【解答】解:令y=﹣2x2+8x﹣6=0,
第15页(共31页)
2015年山东省济南市中考数学试卷(含答案)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)