教学设计
等比数列的基本性质及其应用
从容说课
这节课师生将进一步探究等比数列的知识,以教材练习中提供的问题作为基本材料,认识等比数列的一些基本性质及内在的联系,理解并掌握一些常见结论,进一步能用来解决一些实际问题.通过一些问题的探究与解决,渗透重要的数学思想方法.如类比思想、归纳思想、数形结合思想、算法思想、方程思想以及一般到特殊的思想方法等教学中以师生合作探究为主要形式,充分调动学生的学习积极性教学重点 .探究等比数列更多的性质.解决生活实际中的等比数列的问题教学难点 渗透重要的数学思想
教具准备 多媒体课件、投影胶片、投影仪等
三维目标
一、知识与技能
.了解等比数列更多的性质
.能将学过的知识和思想方法运用于对等比数列性质的进一步思考和有关等比数列的实际问题的解决中
.能在生活实际的问题情境中,抽象出等比数列关系,并能用有关的知识解决相应的实际问题
二、过程与方法
.继续采用观察、思考、类比、归纳、探究、得出结论的方法进行教学
.对生活实际中的问题采用合作交流的方法,发挥学生的主体作用,引导学生探究问题的解决方法,经历解决问题的全过程
.当好学生学习的合作者的角色三、情感态度与价值观
.通过对等比数列更多性质的探究,培养学生的良好的思维品质和思维习惯,激发学生对知识的探究精神和严肃认真的科学态度,培养学生的类比、归纳的能力
.通过生活实际中有关问题的分析和解决,培养学生认识社会、了解社会的意识,更多地知道数学的社会价值和应用价值
教学过程
导入新课
师 教材中第页练习第题、第题,请学生课外进行活动探究,现在请同学们把你们的探究结果展示一下
生 由学习小组汇报探究结果师 对各组的汇报给予评价
师 出示多媒体幻灯片一:第题、第题详细解答: 第题解答:
()将数列{}的前项去掉,剩余的数列为,,….令则数列,…,可视为,因为
bi?1ak?i?1??q (≥),所以,{}是等比数列,即 ,,…是等比数列biak?i(){}中每隔项取出一项组成的数列是,…,则
aa11a21??...?10k?1?...?q10 a1a11a10k?9
所以数列,…是以为首项,为公比的等比数列
猜想:在数列{}中每隔(是一个正整数)取出一项,组成一个新数列,这个数列是以为首项、为公比的等比数列
◇本题可以让学生认识到,等比数列中下标为等差数列的子数列也构成等比数列,可以让学生再探究几种由原等比数列构成的新等比数列的方法第题解答: ()设{}的公比是,则
而所以同理
()用上面的方法不难证明·(>).由此得出,是和的等比中项,同理可证·(>>)是和的等比中项(>>
师 和等差数列一样,等比数列中蕴涵着许多的性质,如果我们想知道的更多,就要对它作进一步的探究
推进新课 [合作探究] 师 出示投影胶片
例题(教材组第题)就任一等差数列{},计算 ,和 ,,你发现了什么一般规律,能把你发现的规律用一般化的推广吗?从等差数列和函数之间的联系的角度来分析这个问题.在等比数列中会有怎样的类似结论?
师 注意题目中“就任一等差数列{}”,你打算用一个什么样的等差数列来计算? 生 用等差数列,,,
师 很好,这个数列最便于计算,那么发现了什么样的一般规律呢? 生 在等差数列{}中,若(∈ *),则
师 题目要我们“从等差数列与函数之间的联系的角度来分析这个问题”,如何做? 生 思考、讨论、交流
师 出示多媒体课件一:等差数列与函数之间的联系[教师精讲]
师 从等差数列与函数之间的联系的角度来分析这个问题:由等差数列{}的图象,可以看出
akkass?,?appaqq
根据等式的性质,有
ak?ask?s??1ap?aqp?q
所以
师 在等比数列中会有怎样的类似结论? 生 猜想对于等比数列{},类似的性质为:(∈*),则
师 让学生给出上述猜想的证明证明:设等比数列{}公比为, 则有
等比数列的基本性质及其应用教学设计 人教课标版(优秀教案)



