整式
教学目的和要求:
1.理解多项式的升(降)幂排列的概念,会进行多项式的升(降)幂排列。 2.通过尝试和交流,让学生体会到多项式升(降)幂排列的可行性和必要性。 3.初步体验排列组合思想与数学美感,培养学生的审美观。 教学重点和难点:
重点:会进行多项式的升(降)幂排列,体验其中蕴含的数学美。 难点:会进行多项式的升(降)幂排列,体验其中蕴含的数学美。 教学方法:
分层次教学,讲授、练习相结合。 教学过程: 一、复习引入:
2
请运用加法交换律,任意交换多项式x+x+1中各项的位置,可以得到几种不同的排列方式?在众多的排列方式中,你认为那几种比较整齐?
(以上由学生小组讨论,得出结果后,教师可投影演示,然后与全班同学共同探讨。充分发挥学生的主体作用,让学生成为知识的发现者,感受成功的喜悦,体验其中蕴含的数学美,增强学好数学的信心。)
2
由讨论发现任意交换多项式x+x+1中各项的位置,可以得到六种不同的排列方式,在众
22
多的排列方式中,像x+x+1与1+x+x这样的排列比较整齐。 二、讲授新课:
1.升幂排列与降幂排列:
这两种排列有一个共同点,那就是x的指数是逐渐变小(或变大)的。我们把这种排列叫做升幂排列与降幂排列。(板书课题:升幂排列与降幂排列。)
2332
例如:把多项式5x+3x-2x-1按x的指数从大到小的顺序排列,可以写成-2x+5x+3x-1,这叫做这个多项式按字母x的降幂排列。
23
若按x的指数从小到大的顺序排列,则写成-1+3x+5x-2x,这叫做这个多项式按字母x的升幂排列。
板书由学生自己归纳得出的多项式概念。上面这些代数式都是由几个单项式相加而成的。像这样,几个单项式的和叫做多项式(polynomial)。在多项式中,每个单项式叫做多项式的项(term)。其中,不含字母的项,叫做常数项(constant term)。例如,多项式3x?2x?5有三项,它们是3x,-2x,5。其中5是常数项。
一个多项式含有几项,就叫几项式。多项式里,次数最高项的次数,就是这个多项式的次数。例如,多项式3x?2x?5是一个二次三项式。
注意:
(1)多项式的次数不是所有项的次数之和; (2)多项式的每一项都包括它前面的符号。
(教师介绍多项式的项和次数、以及常数项等概念,并让学生比较多项式的次数与单项式的次数的区别与联系,渗透类比的数学思想。) 2.例题: 例1:游戏:
222
规则:五个学生上前自己选一张卡片,根据教师要求排成一列,下面同学把排列正确的式子写下来。 例如:
+3x2y2 -7xy3 +2y -11x7y5 -35x3
按x降幂排列:
-11x7y5 -35x3 +3x2y2 -7xy3 +2y
753223
式子:-11xy-35x+3xy-7xy+2y
(可激发学生的学习兴趣,活跃课堂气氛,帮助学生进一步理解新知,从活动中巩固新学知识。)
322
例2:把多项式2πr-1+3πr-πr按r升幂排列。
43?r。 32
说明:π是数字,不是字母,题目中一次项、二次项、三次项系数分别为2π、-π、3π。
3322
例3:把多项式a-b-3ab+3ab重新排列。
(1)按a升幂排列; (2)按a降幂排列。
2解:按r的升幂排列为:?1?2?r??r?解:(1)按a的升幂排列为:b3?3ab2?3a2b?a3。(2)按a的降幂排列为:a3?3a2b?3ab2?b3。 想一想:
观察上面两个排列,从字母b的角度看,它们又有何特点?(由学生参照例题自己解答。) (3五分钟测试
1 把多项式-1+2πx2-x-x3y用适当的方式排列。
分析:题中含有2个字母x和y,而各项中关于x的指数层次较全,因此,选择关于x的升(降)幂排列较为合理。
23解:按x的升幂排列为:?1?x?2?x?yx。
2:把多项式x4-y4+3x3y-2xy2-5x2y3用适当的方式排列。 (1)按字母x的升幂排列得: ; (2)按字母y的升幂排列得: 。) 注意:
(1)重新排列多项式时,每一项一定要连同它的符号一起移动;
(2)含有两个或两个以上字母的多项式,常常按照其中某一字母升幂排列或降幂排列。 三、课堂小结:
对一个多项式进行排列,这样的写法除了美观之外,还会为今后的计算带来方便。在排列时我们要注意:
①重新排列多项式时,每一项一定要连同它的符号一起移动,原首项省略的“+”号交换到后面时要添上;
②含有两个或两个以上字母的多项式,常常按照其中某一字母升(降)幂排列。 板书设计:
《升幂排列与降幂排列》
1.升幂排列与降幂排列: 2.例:……… 例:…………
……………… ………………… …………………
……………… ………………… …………………
五分钟测试:…… ………………… ……………… …………………
………………… ………………… ………………… ………………… ………………… ………………… ………………… …………………
教学后记:
本节教学建立在学生掌握了整式的基础上,可先让学生运用已有知识任意排列多项式x2+x+1,为学生提供开放性的问题,使学生产生好奇心和求知欲,体会到升(降)幂排列的可行性和必要性,新知便一呼而出。通过游戏,激发学生学习的兴趣,帮助学生进一步理解新知。通过练习了解学生掌握和运用知识的情况,培养学生独立思考,锻炼克服困难的意志,建立自信心,初步体验排列组合思想,培养审美观。