好文档 - 专业文书写作范文服务资料分享网站

lagrange - multiplier

天下 分享 时间: 加入收藏 我要投稿 点赞

LagrangeMultipliers

May16,2020

Abstract

WeconsideraspecialcaseofLagrangeMultipliersforconstrainedopti-mization.Theclassquicklysketchedthe“geometric”intuitionforLa-grangemultipliers,andthisnoteconsidersashortalgebraicderivation.

Inordertominimizeormaximizeafunctionwithlinearconstraints,weconsider?ndingthecriticalpoints(whichmaybelocalmaxima,localminima,orsaddlepoints)of

f(x)subjecttoAx=bHeref:Rd→Risaconvex(orconcave)function,x∈Rd,A∈Rn×d,andb∈Rn.To?ndthecriticalpoints,wecannotjustsetthederivativeoftheobjectiveequalto0.1ThetechniqueweconsideristoturntheproblemfromaconstrainedproblemintoanunconstrainedproblemusingtheLagrangian,

L(x,μ)=f(x)+μT(Ax?b)inwhichμ∈Rn

We’llshowthatthecriticalpointsoftheconstrainedfunctionfarecriticalpointsofL(x,μ).

FindingtheSpaceofSolutionsAssumetheconstraintsaresatis?able,thenletx0besuchthatAx0=b.Letrank(A)=r,thenlet{u1,...,uk}beanorthonormalbasisforthenullspaceofAinwhichk=d?r.Noteifk=0,thenx0isuniquelyde?ned.Soweconsiderk>0.Wewritethisbasisasamatrix:

U=[u1,...,uk]∈Rd×k

SinceUisabasis,anysolutionforf(x)canbewrittenasx=x0+Uy.Thiscapturesallthefreeparametersofthesolution.Thus,weconsiderthefunction:

g(y)=f(x0+Uy)inwhichg:Rk→R

Thecriticalpointsofgarecriticalpointsoff.Noticethatgisunconstrained,sowecanusestandardcalculusto?nditscriticalpoints.

?yg(y)=0equivalentlyUT?f(x0+Uy)=0.

1See

theexampleattheendofthisdocument.

1

Tomakesurethetypesareclear:?yg(y)∈Rk,?f(z)∈RdandU∈Rd×k.Inbothcases,0isthe0vectorinRk.

Theaboveconditionsaysthatifyisacriticalpointforg,then?f(x)mustbeorthogonaltoU.However,UformsabasisforthenullspaceofAandtherowspaceisorthogonaltoit.Inparticular,anyelementoftherowspacecanbewrittenz=ATμ∈Rd.Weverifythatzandu=Uyareorthogonalsince:

zTu=μTAu=μT0=0

SincewecandecomposeRdasadirectsumofnull(A)andtherowspaceofA,weknowthatanyvectororthogonaltoUmustbeintherowspace.Wecanrewritethisorthogonalityconditionasfollows:thereissomeμ∈Rn(dependingonx)suchthat

?f(x)+ATμ=0foracertainxsuchthatAx=A(x0+Uy)=Ax0=b.

TheCleverLagrangianWenowobservethatthecriticalpointsoftheLa-grangianare(bydi?erentiatingandsettingto0)

?xL(x,μ)=?f(x)+ATμ=0and?μL(x,μ)=Ax?b=0

The?rstconditionisexactlytheconditionthatxbeacriticalpointinthewaywederiveditabove,andthesecondconditionsaysthattheconstraintbesatis?ed.Thus,ifxisacriticalpoint,thereexistssomeμasabove,and(x,μ)isacriticalpointforL.

GeneralizingtoNonlinearEqualityConstraintsLagrangemultipliersareamuchmoregeneraltechnique.Ifyouwanttohandlenon-linearequalityconstraints,thenyouwillneedalittleextramachinery:theimplicitfunctiontheorem.However,thekeyideaisthatyou?ndthespaceofsolutionsandyouoptimize.Inthatcase,?ndingthecriticalpointsof

f(x)s.t.g(x)=cleadstoL(x,μ)=f(x)+μT(g(x)?c).

Thegradientconditionhereis?f(x)+JTμ=0,whereJistheJacobianmatrixofg.Forthecasewherewehaveasingleconstraint,thegradientconditionreducesto?f(x)=?μ1?g1(x),whichwecanviewassaying,“atacriticalpoint,thegradientofthesurfacemustbeparalleltothegradientofthefunction.”Thisconnectsusbacktothepicturethatwedrewduringlecture.

Example:NeedforconstrainedoptimizationWegiveasimpleexampletoshowthatyoucannotjustsetthederivativesto0.Considerf(x1,x2)=x1

2

andg(x1,x2)=x21+x2andso:

maxf(x)subjecttog(x)=1.

x

2

Thisisjustalinearfunctionaloverthecircle,anditiscompact,sothefunc-tionmustachieveamaximumvalue.Intuitively,wecanseethat(1,0)isthemaximumpossiblevalue(andhenceacriticalpoint).Here,wehave:

????????1x1

?f(x)=and?g(x)=2

0x2Noticethat?f(x)isnotzeroanywhereonthecircle–it’sconstant!Forx∈

{(1,0),(?1,0)},?f(x)=λ?g(x)(takeλ∈{1/2,?1/2},respectively).Ontheotherhand,foranyotherpointonthecirclex2=0,andsothegradientoffandgarenotparallel.Thus,suchpointsarenotcriticalpoints.ExtraResources

Ifyou?ndresourcesyoulike,postthemonPiazza!

3

lagrange - multiplier

LagrangeMultipliersMay16,2020AbstractWeconsideraspecialcaseofLagrangeMultipliersforconstrainedopti-mization.Theclassquicklysketchedthe“geometric”intuitionforLa-grangemultiplier
推荐度:
点击下载文档文档为doc格式
10e7q37x3b44s0w0d4ij47hq70zb09011vv
领取福利

微信扫码领取福利

微信扫码分享