3.1质数与合数(一)
年级 班 姓名 得分 一、填空题
1在一位的自然数中,既是奇数又是合数的有_____;既不是合数又不是质数的有_____;既是偶数又是质数的有_____.
2、最小的质数与最接近100的质数的乘积是_____.
3、两个自然数的和与差的积是41,那么这两个自然数的积是_____. 4、在下式样□中分别填入三个质数,使等式成立.
□+□+□=50
5、三个连续自然数的积是1716,这三个自然数是_____、_____、_____. 6、找出1992所有的不同质因数,它们的和是_____.
7、如果自然数有四个不同的质因数, 那么这样的自然数中最小的是_____. 8、9216可写成两个自然数的积,这两个自然数的和最小可以达到_____. 9、从一块正方形的木板上锯下宽为3分米的一个木条以后,剩下的面积是108平方分米.木条的面积是_____平方分米.
10、今有10个质数:17,23,31,41,53,67,79,83,101,103.如果将它们分成两组,每组五个数,并且每组的五个数之和相等,那么把含有101的这组数从小到大排列,第二个数应是_____.
二、解答题
11、2,3,5,7,11,…都是质数,也就是说每个数只以1和它本身为约数.已知一个长方形的长和宽都是质数个单位,并且周长是36个单位.问这个长方形的面积至多是多少个平方单位?
12、把7、14、20、21、28、30分成两组,每三个数相乘,使两组数的乘积相等.
13、学生1430人参加团体操,分成人数相等的若干队,每队人数在100至200之
间,问哪几种分法?
14、四只同样的瓶子内分别装有一定数量的油,每瓶和其他各瓶分别合称一次,
记录千克数如下:8、9、10、11、12、13.已知四只空瓶的重量之和以及油的重量之和均为质数,求最重的两瓶内有多少油?
6
3.2质数与合数(二)
年级 班 姓名 得分 一、填空题
1、在1~100里最小的质数与最大的质数的和是_____.
2、小明写了四个小于10的自然数,它们的积是360.已知这四个数中只有一个是合数.这四个数是____、____、____和____. 3、把232323的全部质因数的和表示为AB,那么A?B?AB=_____.
4、有三个学生,他们的年龄一个比一个大3岁,他们三个人年龄数的乘积是1620,这三个学生年龄的和是_____.
5、两个数的和是107,它们的乘积是1992,这两个数分别是_____和_____. 6、如果两个数之和是64,两数的积可以整除4875,那么这两数之差是_____. 7、某一个数,与它自己相加、相减、相乘、相除,得到的和、差、积、商之和为256.这个数是_____.
8、有10个数:21、22、34、39、44、45、65、76、133和153.把它们编成两组,每组5个数,要求这组5个数的乘积等于那组5个数的乘积.第一组数____________;第二组数是____________. 9、有_____个两位数,在它的十位数字与个位数字之间写一个零,得到的三位数能被原两位数整除. 10、主人对客人说:“院子里有三个小孩,他们的年龄之积等于72,年龄之和恰好是我家的楼号,楼号你是知道的,你能求出这些孩子的年龄吗?”客人想了一下说:“我还不能确定答案。”他站起来,走到窗前,看了看楼下的孩子说:“有两个很小的孩子,我知道他们的年龄了。”主人家的楼号是_____ ,孩子的年龄是_____.
二、解答题
11、甲、乙、丙三位同学讨论关于两个质数之和的问题。甲说:“两个质数之和一定是质数”.乙说:“两个质数之和一定不是质数”.丙说:“两个质数之和不一定是质数”.他们当中,谁说得对?
12、下面有3张卡片 3 , 2 , 1 ,从中抽出一张、二张、三张,按任意次序排起来,得到不同的一位数、两位数、三位数.把所得数中的质数写出来.
13、在100以内与77互质的所有奇数之和是多少?
14、在射箭运动中,每射一箭得到的环数或者是“0”(脱靶),或者是不超过10的自然数.甲、乙两名运动员各射了5箭,每人5箭得到环数的积都是1764,但是甲的总环数比乙少4环.求甲、乙的总环数.
7
4.1约数与倍数(一)
年级 班 姓名 得分 一、填空题
1、28的所有约数之和是_____.
2、用105个大小相同的正方形拼成一个长方形,有_____种不同的拼法. 3、一个两位数,十位数字减个位数字的差是28的约数,十位数字与个位数字的积是24.这个两位数是_____. 4、李老师带领一班学生去种树,学生恰好被平均分成四个小组,总共种树667棵,如果师生每人种的棵数一样多,那么这个班共有学生_____人.
5、两个自然数的和是50,它们的最大公约数是5,则这两个数的差是_____.
6、现有梨36个,桔108个,分给若干个小朋友,要求每人所得的梨数,桔数相等,最多可分给_____个小朋友,每个小朋友得梨_____个,桔_____个.
7、一块长48厘米、宽42厘米的布,不浪费边角料,能剪出最大的正方形布片_____块.
8、长180厘米,宽45厘米,高18厘米的木料,能锯成尽可能大的正方体木块(不余料)_____块. 9、张师傅以1元钱3个苹果的价格买苹果若干个,又以2元钱5个苹果的价格将这些苹果卖出,如果他要赚得10元钱利润,那么他必须卖出苹果_____个.
10、含有6个约数的两位数有_____个.
11、写出小于20的三个自然数,使它们的最大公约数是1,但两两均不互质,请问有多少组这种解?
12、和为1111的四个自然数,它们的最大公约数最大能够是多少?
1313、狐狸和黄鼠狼进行跳跃比赛,狐狸每次跳4米,黄鼠狼每次跳2米,它
243们每秒钟都只跳一次.比赛途中,从起点开始每隔12米设有一个陷井,当它
8们之中有一个掉进陷井时,另一个跳了多少米?
14、已知a与b的最大公约数是12,a与c的最小公倍数是300,b与c的最小公倍数也是300,那么满足上述条件的自然数a,b,c共有多少组?
(例如:a=12、b=300、c=300,与a=300、b=12、c=300是不同的两个自然数组)
8
4.2约数与倍数(二)
年级 班 姓名 得分 一、 填空题
1、把20个梨和25个苹果平均分给小朋友,分完后梨剩下2个,而苹果还缺2个,一共有_____个小朋友.
2、幼儿园有糖115颗、饼干148块、桔子74个,平均分给大班小朋友;结果糖多出7颗,饼干多出4块,桔子多出2个.这个大班的小朋友最多有_____人. 3、用长16厘米、宽14厘米的长方形木板来拼成一个正方形,最少需要用这样的木板_____块.
4、用长是9厘米、宽是6厘米、高是7厘米的长方体木块叠成一个正方体,至少需要这种长方体木块_____块.
5、一个公共汽车站,发出五路车,这五路车分别为每隔3、5、9、15、10分钟发一次,第一次同时发车以后,_____分钟又同时发第二次车.
6、动物园的饲养员给三群猴子分花生,如只分给第一群,则每只猴子可得12粒;如只分给第二群,则每只猴子可得15粒;如只分给第三群,则每只猴子可得20粒.那么平均给三群猴子,每只可得_____粒.
7、这样的自然数是有的:它加1是2的倍数,加2是3的倍数,加3是4的倍数,加4是5的倍数,加5是6的倍数,加6是7的倍数,在这种自然数中除了1以外最小的是_____.
8、能被3、7、8、11四个数同时整除的最大六位数是_____.
9、把26,33,34,35,63,85,91,143分成若干组,要求每一组中任意两个数的最大公约数是1, 那么至少要分成_____组.
10、210与330的最小公倍数是最大公约数的_____倍.
二、解答题
11、公共汽车总站有三条线路,第一条每8分钟发一辆车,第二条每10分钟发一辆车,第三条每16分钟发一辆车,早上6:00三条路线同时发出第一辆车.该总站发出最后一辆车是20:00,求该总站最后一次三辆车同时发出的时刻.
12、甲乙两数的最小公倍数除以它们的最大公约数,商是12.如果甲乙两数的差
是18,则甲数是多少?乙数是多少? 511513、用、、1分别去除某一个分数,所得的商都是整数.这个分数最小
285620是几?
14、有15位同学,每位同学都有编号,他们是1号到15号,1号同学写了一个自
然数,2号说:“这个数能被2整除”,3号说:“这个数能被他的编号数整除.1号作了检验:只有编号连续的二位同学说得不对,其余同学都对,问: (1)说的不对的两位同学,他们的编号是哪两个连续自然数? (2)如果告诉你,1号写的数是五位数,请找出这个数.
9
5.2带余数除法(二)
年级 班 姓名 得分 一、填空题
1、除107后,余数为2的两位数有_____. 2、27?( )=( )……3.
上式( )里填入适当的数,使等式成立,共有_____种不同的填法. 3、四位数8□98能同时被17和19整除,那么这个四位数所有质因数的和是_____. 4、一串数1、2、4、7、11、16、22、29……这串数的组成规律,第2个数比第1个数多1;第3个数比第2个数多2;第4个数比第3个数多3;依此类推;那么这串数左起第1992个数除以5的余数是_____.
5、222……22除以13所得的余数是_____. 2000个
6、小明往一个大池里扔石子,第一次扔1个石子,第二次扔2个石子,第三次扔3个石子,第四次扔4个石子……,他准备扔到大池的石子总数被106除,余数是0止,那么小明应扔_____次. 7、七位数3□□72□□的末两位数字是_____时,不管十万位上和万位上的数字是0,1,2,3,4,5,6,7,8,9中哪一个,这个七位数都不是101的倍数.
8、有一个自然数,用它分别去除63,90,130都有余数,三个余数的和是25.这三个余数中最小的一个是_____.
9、在1,2,3,……29,30这30个自然数中,最多能取出_____个数,使取出的这些数中,任意两个不同的数的和都不是7的倍数.
10、用1-9九个数字组成三个三位数,使其中最大的三位数被3除余2,并且还尽可能地小;次大的三位数被3除余1;最小的三位数能被3整除.那么,最大的三位数是_____.
10