1.多糖的提取方法
生物活性多糖主要有真菌多糖、植物多糖、动物多糖 3 大类。 多糖的提取首先要根据多糖的存在形式及提取部位,决定在提取之前是否做预处理。 动物多糖和微生物多糖多有脂质包围,一般需要先加入丙酮、乙醚、乙醇或乙醇乙醚的混合液进行回流脱脂,释放多糖。 植物多糖提取时需注意一些含脂较高的根、茎、叶、花、果及种子类,在提取前,应先用低极性的有机溶剂对原料进行脱脂预处理,目前多糖的提取方法主要有溶剂提取法、生物提取法、强化提取法等。
1.1溶剂法
1.1.1水提醇沉法
水提醇沉法是提取多糖最常用的一种方法。 多糖是极性大分子化合物,提取时应选择 水、醇等极性强的溶剂。 用水作溶剂来提取多糖时,可以用热水浸煮提取,也可以用冷水浸提渗滤,然后将提取液浓缩后,在浓缩液中加乙醇,使其最终体积分数达到 70 %左右,利用多糖不溶于乙醇的性质,使多糖从提取液中沉淀出来,室温静置 5 h,多糖的质量分数和得率均较高。 影响多糖提取率的因素有:水的用量、提取温度、浸提固液比、提取时间以及提取次数等。
水提醇沉法提取多糖不需特殊设备,生产工艺成本低,安全,适合工业化大生产,是一种可取的提取方法。但由于水的极性大,容易把蛋白质、苷类等水溶性的成分浸提出来,从而使提取液存放时腐败变质,为后续的分离带来困难,且该法提取比较耗时,提取率也不高。 1.1.2酸提法
为了提高多糖的提取率,在水提醇沉法的基础上发展了酸提取法。 如某些含葡萄糖醛酸等酸性基团的多糖在较低 pH 值下难以溶解,可用乙酸或盐酸使提取液成酸性,再加乙醇使多糖沉淀析出,也可加入铜盐等生成不溶性络合物或盐类沉淀而析出。
由于 H+的存在抑制了酸性杂质的溶出,稀酸提取法提取得到的多糖产品纯度相对较高,但在酸性条件下可能引起多糖中糖苷键的断裂,且酸会对容器造成腐蚀,除弱酸外,一般不宜采用。 因此酸提法也存在一定的不足之处。 1.1.3碱提法
多糖在碱性溶液中稳定, 碱有利于酸性多糖的浸出,可提高多糖的收率,缩短提取时间,但提取液中含有其它杂质,使粘度过大,过滤困难,且浸提液有较浓的碱味,溶液颜色呈黄色,这样会影响成品的风味和色泽。 1.1.4超临界流体萃取法
超临界流体萃取技术是近年来发展起来的一种新的提取分离技术。 超临界流
体是指物质处于临界温度和临界压力以上时的状态,这种流体兼有液体和气体的特点,密度大,粘稠度小,有极高的溶解,渗透到提取材料的基质中,发挥非常有效的萃取功能。 而且这种溶解能力随着压力的升高而增大,提取结束后,再通过减压将其释放出来,具有保持有效成分的活性和无溶剂残留等优点。 由于 CO2的超临界条件(TC=304.6 ℃,Tp=7.38 MPa)容易达到,常用于超临界萃取的溶剂,在压力为 8~40 MPa 时的超临界CO2足以溶解任何非极性、中极性化合物,在加入改性剂后则可溶解极性化物。
该法的缺点是设备复杂,运行成本高,提取范围有限。
1.2酶解法
1.2.1单一酶解法
单一酶解法指的是使用一种酶来提取多糖,从而提高提取率的生物技术。 其中经常使 用的酶有蛋白酶、纤维素酶等。 蛋白酶对植物细胞中游离的蛋白质具有分解作用,使其结构变得松散;蛋白酶还会使糖蛋白和蛋白聚糖中游离的蛋白质水解,降低它们对原料的结合力,有利于多糖的浸出。
1.2.2复合酶解法
复合酶解法采用一定比例的果胶酶、纤维素酶及中性蛋白酶,主要利用纤维素酶和果胶 酶水解纤维素和果胶,使植物组织细胞的细胞壁破裂,释放细胞壁内的活性多糖,多糖释放的多少和复合酶的加入量、酶解温度、酶解时间、酶解 pH 值有直接的关系。
酶解法提取的实质是通过酶解反应强化传质过程。 此法具有条件温和、杂质易除和得率高等优点。
1.3物理强化法
1.3.1微波辅助提取法
微波萃取是高频电磁波穿透萃取媒质,到达被萃取物料的内部,能迅速转化为热能使细胞内部温度快速上升,细胞内部压力超过细胞壁承受力,细胞破裂,细胞内有效成分流出,在较低的温度下溶解于萃取媒质,通过进一步过滤和分离,获得萃取物料。
微波辅助提取多糖和其他的萃取方法比较,微波萃取效率高,操作简单,且不会引入杂质,多糖纯度高,能耗小,操作费用低,符合环境保护要求,是很好的多糖提取方法。 1.3.2超声波辅助提取法
超声波提取是利用超声波的机械效应、空化效应及热效应。 机械效应可增大介质的运动速度及穿透力,能有效的破碎生物细胞和组织,从而使提取的有效成分溶解于溶剂之中;空化效应使整个生物体破裂,整个破裂过程在瞬间完成,有利于有效成分的溶出;热效应增大了有效成分的溶解速度,这种热效应是瞬间的,可使被提取成分的生物活性尽量保持不变;此外,许多次级效应也能促进提取材料中有效成分的溶解,提高了提取率。
超声波提取与水煮法醇沉法相比,萃取充分,提取时间短;与浸泡法相比,提取率高。 1.3.3高压脉冲法
高压脉冲法是对两电极间的流态物料反复施加高电压的短脉冲(典型为 20~80 kV/cm) 进行处理,作用机理有多种假说,如细胞膜穿孔效应、电磁机制模型、粘弹极性形成模型、电解产物效应、臭氧效应等,研究最多的是细胞膜穿孔效应。 动物、植物、微生物的细胞,在外加电场作用下,产生横跨膜电位,绝缘的生物膜由于电场形成了微孔,通透性发生变化,当整个膜电位达到极限值(约为 1 V)时,膜破裂,膜结构变成无序状态,形成细孔,渗透能力增强。 电位差达到临界点,细胞破裂。
2.多糖的分离纯化
2.1 除蛋白
2.1.1Sevage 法
根据蛋白质在氯仿等有机溶剂中变性的特点,用 V(氯仿)∶V(戊醇或正丁醇)为 5∶1 或 4∶1,混合物剧烈振摇 20~30 min,蛋白质变性生成凝胶,离心分离,分去水层和溶剂层交界处的变性蛋白质。 此种只能除去少量蛋白质,效率不高,须反复多次,多糖有损失。 但此方法比较温和,在避免多糖降解上效果较好,如配合加入一些蛋白质水解酶,用 Sevage 法效果更佳。 此法不能除去脂蛋白,因为脂蛋白溶于氯仿。 2.1.2三氟三氯乙烷法
将多糖溶液与三氟三氯乙烷等体积混合,低温搅拌 10 min 左右,离心分离得上层 水层,水层继续用上述方法反复处理几次,得无蛋白质的多糖溶液,此法效率较 Seavg 法高,但溶剂沸点低,易挥发,不宜大量应用。 2.1.3三氯乙酸法
三氯乙酸是一种有机酸,使多糖提取液中的蛋白质与有机酸作用而变性沉淀。 该法是 在多糖水提液中滴加 5 %~10 %与多糖水提取液等体积的三氯乙酸,混匀静置过夜,离心除去胶状沉淀,重复以上的操作直至溶液不再继续混浊为止,得无蛋白质的多糖。 三氯乙酸浓度越大,
除蛋白质效果越好,但对多糖的影响也越大,可能是三氯乙酸对多糖结构具有破坏作用,使多糖降解,而且这种破坏作用随着三氯乙酸浓度增大而增强。
植物多糖常采用三氯乙酸法除蛋白质,也可先用蛋白水解酶,使样品中的蛋白质部分降解后再用 Sevag 法效果更好;微生物多糖去除蛋白常采用 Sevag 法、三氟三氯乙烷法;也可用盐析法、有机溶剂萃取等方法除蛋白。
2.2多糖的分离
主要有分级沉淀、季铵盐沉淀法、金属盐沉淀法、色谱分离、膜分离、透析、电渗析等,目前大多采用 DEAE-凝胶或其他各种不同类型的凝胶柱层析以及离子交换色谱法。 2.2.1分级沉淀法
大多数活性多糖可溶于水,3 个碳以下的多糖还可溶于乙醇,随着聚合度的增大,多糖 在乙醇中的溶解度逐渐降低。 根据这一性质可在多糖的浓缩水溶液中分批加入乙醇,使乙醇的体积浓度逐渐增加到 50,100,200,900 mL/L,从而使不同聚合度的多糖分别沉淀析出。 2.2.2色谱分离法
常用两种色谱分离方法:一是凝胶柱色谱法,二是离子交换色谱法。 2.2.3膜分离法
膜分离技术(membrane separation technology,MST)是一种高效分离技术,分离过程以选择透过性膜作为分离介质,通过在膜两侧施加某种推动力(压力差、化学位差、电位差等),使原料液中组分有选择性的通过膜。 目前应用较多的是超滤和微滤技术。
3多糖的分析鉴定
3.1含量的测定
测定方法:硫酸-苯酚法、硫酸-蒽酮法、比色定量法、分光光度法、纸色谱法、离子交换色谱法、yaphe 法、薄层色谱法、酶法、原子吸收法、HPLC 法、凝胶电泳法、亲和电泳法、连续流动分析法检测法[44]、次亚碘酸盐定量法、蒽酮-硫酸法(总糖)、DNS 法(还原法)、磷钼比色法、邻钾苯胺比色法等。 每种方法只对某些多糖的测量效果好。 比色法、分光光度法、离子交换色谱法、酶法和电泳法等可同时用于多糖的定性定量分析。
3.2纯度鉴定
多糖是高分子化合物,其纯品微观上是不均一的,通常所说的多糖纯品实质上是一定分子量范围的均一组分。 多糖纯度鉴定的常用方法:超离心、高压电泳、凝胶层析、HLPC 法等。 现在应用较多的是 HLPC 法,旋光度测定也是纯度测定的一种方法。
3.3分子量的测定
多糖分子量的测定是研究多糖性质的一项重要工作。 常用方法:渗透压法、蒸气压渗透剂法、端基法、粘度法、光散射法、凝胶色谱法、超过率法、沉淀法、凝胶电泳法、HPLC 法、超离心分析法、分子筛色谱法、GPC 法、MALDI-TOF-MS 法。
3.4结构测定
3.4.1多糖一级结构测定
多糖的一级结构分析,主要是分析组成多糖的单糖类型、数目、连接方式及苷建
构型。 常用化学法和仪器分析法。 多糖组分与分子比例测定法:部分酸解法、完全酶解法、色谱法;吡喃、呋喃环形式结构的分析:红外光谱;连接次序:选择性光谱法、糖苷键顺序水解、核磁共振;α-β-异头异构体:糖苷酶水解、核磁共振;羟基被取代情况:甲基化反应、气相色谱、过碘酸氧化、Smith 降解法和测硫酸基法
(terho 法)、核磁共振、质谱法;糖链、肽链连接方式:单糖与氨基酸组成、稀碱水解法、肼解反应;多糖结构的分析方法很多,迄今没有一种方法可以单独完成多糖结构的分析。 仪器分析与化学方法相结合是常用的多糖结构测定方法。