分式方程与二次根式方程
〖知识点〗
分式方程、二次根式的概念、解法思路、解法、增根 〖大纲要求〗
了解分式方程、二次根式方程的概念。掌握把简单的分式方程、二次根式方程转化为一元一次方程、一元二次方程的一般方法,会用换元法解方程,会检验。
内容分析
1.分式方程的解法 (1)去分母法
用去分母法解分式方程的一般步骤是:
(i)在方程的两边都乘以最简公分母,约去分母,化成整式方程; (ii)解这个整式方程;
(iii)把整式方程的根代入最简公分母,看结果是不是零,使最简公分母不为零的根是原方程的根,使最简公分母为零的根是增根,必须舍去.
在上述步骤中,去分母是关键,验根只需代入员简公分母. (2)换元法
用换元法解分式方程,也就是把适当的分式换成新的未知数,求出新的未知数后求出原来的未知数. 2.二次根式方程的解法 (1)两边平方法
用两边平方法解无理方程的—般步骤是:
(i)方程两边都平方,去掉根号,化成有理方程; (ii)解这个有理方程;
(iii)把有理方程的根代入原方程进行检验,如果适合,就是原方程的根,如果不适合,就是增根,必须舍去. 在上述步骤中,两边平方是关键,验根必须代入原方程进行. (2)换元法
用换元法解无理方程,就是把适当的根号下台有未知数的式子换成新的未知数,求出新的未知数后再求原来的未知数.
〖考查重点与常见题型〗
考查换元法解分式方程和二次根式方程,有一部分只考查换元的能力,常出现 在选择题中另一部分习题考查完整的解题能力,习题出现在中档解答题中。
考题类型
x2-13x3x
1.(1)用换元法解分式方程2 +3x =3时,设2 =y,原方程变形为( )
x-1x-1 (A)y2-3y+1=0(B)y2+3y+1=0(C)y2+3y-1=0(D)y2-y+3=0
2.用换元法解方程x2+8x+x2+8x-11 =23,若设y=x2+8x-11 ,则原方程可化为( )
(A)y2+y+12=0(B)y2+y-23=0(C)y2+y-12=0(D)y2+y-34=0 m+1x+12x
3.若解分式方程 -2 =x 产生增根,则m的值是( )
x-1x+x
(A)-1或-2 (B)-1或2 (C)1或2 (D)1或-2
41
4.解方程x - =1时,需将方程两边都乘以同一个整式(各分母的最简公分母),约去分母,所乘的这个整
x-1式为( )
(A)x-1 (B)x(x-1) (C)x (D)x+1 5.先阅读下面解方程x+x-2 =2的过程,然后填空.
解:(第一步)将方程整理为x-2+x-2 =0;(第二步)设y=x-2 ,原方程可化为y2+y=0;(第三步)解这个方程的 y1=0,y2=-1(第四步)当y=0时,x-2 =0;解得 x=2,当y=-1时,x-2 =-1,方程无解;(第五步)所以x=2是原方程的根以上解题过程中,第二步用的方法是___,第四步中,能够判定方程x-2 =-1无解原根据是__。上述解题过程不完整,缺少的一步是___。 考点训练:
1. 给出下列六个方程:1)x2-2x+2=0 2)x-2 =1-x 3)x-3 +x-2 =0 4)x+1 +2=0 5)111x + =0 6) +1= 具中有实数解的方程有( ) xx-1x-1x-1(A)0个 (B)1个 (C)2个 (D)多于2个
2x1
2. 方程2 -1= 的解是( )
x-4x+2(A)-1 (B)2或-1 (C)-2或3 (D)3
x-3m
3. 当分母解x 的方程 = 时产生增根,则m的值等于( )
x-1x-1 (A)-2 (B)-1 (C)1. (D)2 4. 5. 6. 7.
方程2x-3 -x+1 =0的解是_________。 能使(x-5)x-7 =0成立的x是______。
关于x的方程m(m-1)x+3 =2x-15是根式方程,则m的取值范围是_____。 解下列方程:
12x+1x2-1343x5
(1)2 - = (2)2 +3x = 2
2x-7x+51-x 2x-5 x-1171
(3)x2+ x2 -2 (x-x )+1=0 解题指导: 1. 解下列方程:
x-221
(1)x+2 =x (2)2 + =2
x-9 x(x-3) x+3x6
(3)x2+2x+2= (4)3x+2 -x-8 =32
(x+1)2独立训练
1. 方程x(x2+1) =0的解是_______. 方程2x+3 =-x的解是_______,方程___________ .
xx
2.设y= ____时,分式方程( )2+5( )+6=0可转化为__________.
x-1 x-1
3.用换元法解方程2x-3x2+43x2-2x+5 +1=0可设y =_________.从而把方程化为_____________.
4.下列方程有实数解的是( )
(A)x+2 +5=4 (B)3-x +x-3 =0
236
(C)x2-2x+4=0 (D) + =2
x+1x-1 x-15.解下列方程. (1)
x+2x+4111
=2 (2)2 - = x +1 x-2 x-4 x+2x x+2
14
= 的解是 x-1 x+2
a-x4(b+x)
(3) =5- (a+b≠0) (4)2-x +5-4x =2
b+xa-x
11
(5) 2x2-4x-3x2-2x-4 =10 (6)4(x2+ x2 )-5(x-x )-14=0 (7)3x2+15x+23x2+15x+1 =2 (8)
x+2
+ x-1
x-15
= 2 x+2
xm+1x+1
6.若关于x的方程x-2 - x2+2 = x +1产生增根,求m的值。
2mx3
m为何值时,关于x的方程x-2 - x2-4 = x+2 会产生增根。 x-18x+ax
7. 当a为何值时,方程x - 2x(x-1) + x-1 =0只有一个实数根。 xx+14x+a
方程x+1 + x = - x(x+1) 只有一个实数根,求a的值 36x+m
8.当m为何值时,方程x + x-1 - x(x-1) = 0有解
精心搜集整理,只为你的需要