好文档 - 专业文书写作范文服务资料分享网站

分式方程与次根式方程 - 图文

天下 分享 时间: 加入收藏 我要投稿 点赞

分式方程与二次根式方程

〖知识点〗

分式方程、二次根式的概念、解法思路、解法、增根 〖大纲要求〗

了解分式方程、二次根式方程的概念。掌握把简单的分式方程、二次根式方程转化为一元一次方程、一元二次方程的一般方法,会用换元法解方程,会检验。

内容分析

1.分式方程的解法 (1)去分母法

用去分母法解分式方程的一般步骤是:

(i)在方程的两边都乘以最简公分母,约去分母,化成整式方程; (ii)解这个整式方程;

(iii)把整式方程的根代入最简公分母,看结果是不是零,使最简公分母不为零的根是原方程的根,使最简公分母为零的根是增根,必须舍去.

在上述步骤中,去分母是关键,验根只需代入员简公分母. (2)换元法

用换元法解分式方程,也就是把适当的分式换成新的未知数,求出新的未知数后求出原来的未知数. 2.二次根式方程的解法 (1)两边平方法

用两边平方法解无理方程的—般步骤是:

(i)方程两边都平方,去掉根号,化成有理方程; (ii)解这个有理方程;

(iii)把有理方程的根代入原方程进行检验,如果适合,就是原方程的根,如果不适合,就是增根,必须舍去. 在上述步骤中,两边平方是关键,验根必须代入原方程进行. (2)换元法

用换元法解无理方程,就是把适当的根号下台有未知数的式子换成新的未知数,求出新的未知数后再求原来的未知数.

〖考查重点与常见题型〗

考查换元法解分式方程和二次根式方程,有一部分只考查换元的能力,常出现 在选择题中另一部分习题考查完整的解题能力,习题出现在中档解答题中。

考题类型

x2-13x3x

1.(1)用换元法解分式方程2 +3x =3时,设2 =y,原方程变形为( )

x-1x-1 (A)y2-3y+1=0(B)y2+3y+1=0(C)y2+3y-1=0(D)y2-y+3=0

2.用换元法解方程x2+8x+x2+8x-11 =23,若设y=x2+8x-11 ,则原方程可化为( )

(A)y2+y+12=0(B)y2+y-23=0(C)y2+y-12=0(D)y2+y-34=0 m+1x+12x

3.若解分式方程 -2 =x 产生增根,则m的值是( )

x-1x+x

(A)-1或-2 (B)-1或2 (C)1或2 (D)1或-2

41

4.解方程x - =1时,需将方程两边都乘以同一个整式(各分母的最简公分母),约去分母,所乘的这个整

x-1式为( )

(A)x-1 (B)x(x-1) (C)x (D)x+1 5.先阅读下面解方程x+x-2 =2的过程,然后填空.

解:(第一步)将方程整理为x-2+x-2 =0;(第二步)设y=x-2 ,原方程可化为y2+y=0;(第三步)解这个方程的 y1=0,y2=-1(第四步)当y=0时,x-2 =0;解得 x=2,当y=-1时,x-2 =-1,方程无解;(第五步)所以x=2是原方程的根以上解题过程中,第二步用的方法是___,第四步中,能够判定方程x-2 =-1无解原根据是__。上述解题过程不完整,缺少的一步是___。 考点训练:

1. 给出下列六个方程:1)x2-2x+2=0 2)x-2 =1-x 3)x-3 +x-2 =0 4)x+1 +2=0 5)111x + =0 6) +1= 具中有实数解的方程有( ) xx-1x-1x-1(A)0个 (B)1个 (C)2个 (D)多于2个

2x1

2. 方程2 -1= 的解是( )

x-4x+2(A)-1 (B)2或-1 (C)-2或3 (D)3

x-3m

3. 当分母解x 的方程 = 时产生增根,则m的值等于( )

x-1x-1 (A)-2 (B)-1 (C)1. (D)2 4. 5. 6. 7.

方程2x-3 -x+1 =0的解是_________。 能使(x-5)x-7 =0成立的x是______。

关于x的方程m(m-1)x+3 =2x-15是根式方程,则m的取值范围是_____。 解下列方程:

12x+1x2-1343x5

(1)2 - = (2)2 +3x = 2

2x-7x+51-x 2x-5 x-1171

(3)x2+ x2 -2 (x-x )+1=0 解题指导: 1. 解下列方程:

x-221

(1)x+2 =x (2)2 + =2

x-9 x(x-3) x+3x6

(3)x2+2x+2= (4)3x+2 -x-8 =32

(x+1)2独立训练

1. 方程x(x2+1) =0的解是_______. 方程2x+3 =-x的解是_______,方程___________ .

xx

2.设y= ____时,分式方程( )2+5( )+6=0可转化为__________.

x-1 x-1

3.用换元法解方程2x-3x2+43x2-2x+5 +1=0可设y =_________.从而把方程化为_____________.

4.下列方程有实数解的是( )

(A)x+2 +5=4 (B)3-x +x-3 =0

236

(C)x2-2x+4=0 (D) + =2

x+1x-1 x-15.解下列方程. (1)

x+2x+4111

=2 (2)2 - = x +1 x-2 x-4 x+2x x+2

14

= 的解是 x-1 x+2

a-x4(b+x)

(3) =5- (a+b≠0) (4)2-x +5-4x =2

b+xa-x

11

(5) 2x2-4x-3x2-2x-4 =10 (6)4(x2+ x2 )-5(x-x )-14=0 (7)3x2+15x+23x2+15x+1 =2 (8)

x+2

+ x-1

x-15

= 2 x+2

xm+1x+1

6.若关于x的方程x-2 - x2+2 = x +1产生增根,求m的值。

2mx3

m为何值时,关于x的方程x-2 - x2-4 = x+2 会产生增根。 x-18x+ax

7. 当a为何值时,方程x - 2x(x-1) + x-1 =0只有一个实数根。 xx+14x+a

方程x+1 + x = - x(x+1) 只有一个实数根,求a的值 36x+m

8.当m为何值时,方程x + x-1 - x(x-1) = 0有解

精心搜集整理,只为你的需要

分式方程与次根式方程 - 图文

分式方程与二次根式方程〖知识点〗分式方程、二次根式的概念、解法思路、解法、增根〖大纲要求〗了解分式方程、二次根式方程的概念。掌握把简单的分式方程、二次根式方程转化为一元一次方程、一元二次方程的一般方法,会用换元法解方程,会检验。内容分析1.分式方程的解法(1)去分母法
推荐度:
点击下载文档文档为doc格式
0zmim4kd764mn0g1mmp04oweh0q6fq00oj9
领取福利

微信扫码领取福利

微信扫码分享