t?t21 f?x???dt?x?ln?1?x2??arctanx. 21?t20x?x21?2x?x2 由f??x??得函数f?x?的驻点x1?0,x2??1.而f???x??.所以,
221?x21?xx?? f???0??1?0,f????1???1?0. 21?ln2?是函数f?x?极大值. 24所以,f?0??0是函数f?x?极小值;f??1???1?三.应用题与证明题(本题满分20分,共有2道小题,每道小题10分),
11.求曲线y?x的一条切线,使得该曲线与切线l及直线x?0和x?2所围成的图形绕x轴旋
转的旋转体的体积为最小. 解:
设切点坐标为t,?t,由y??12t,可知曲线y?x在t,?t处的切线方程为
?y?t?因此所求旋转体的体积为
2????1?x?t??? V??????0???2t212t?x?t?,或y?12t?x?t?.
?????8??x?dx???4?2t?
4?3t???2所以,
dV??822????2?2??0.得驻点t??,舍去t??.由于 dt4?3t33?d2V
dt2?2t?3?1643t2?t?23?0,因而函数V在t?2处达到极小值,而且也是最小值.因此所求切3线方程为y?31x?. 42 12.设函数f?x?在闭区间?0,1?上连续,在开区间?0,1?内可导,且
2?f?x?e?arctanxdx?01,f?1??0. 26 / 7
证明:至少存在一点???0,1?,使得f????? 解:
?1?1???arctan?2.
因为f?x?在闭区间?0,1?上连续,所以由积分中值定理,知存在???0,??2?,使得 ???2??ef?x?arctanxdx?2???arctan?.
0?ef2?由于?ef?x?arctanxdx?102,所以,2?ef???arctan??12.再由f?1??0,得 ef???arctan????1?4?efarctan1.
作函数g?x??ef?x?arctanx,则函数在区间??,1???0,1?上连续,在区间??,Rolle中值定理,存在????,1???0,1?,使得g?????0.而 ?x? g??x??ef?x?f??x?arctanx?ef1?x2. 所以存在????,1???0,1?,使得
ef????ef???f???arctan??1??2?0.
由于ef????0,所以f????arctan??11??2?0,即f??????1?1??2?arctan?.
7 / 7
?内可导.所以由
1
大学高数期末考试题及答案



