好文档 - 专业文书写作范文服务资料分享网站

大学高数期末考试题及答案

天下 分享 时间: 加入收藏 我要投稿 点赞

第一学期高等数学期末考试试卷答案

一.计算题(本题满分35分,共有5道小题,每道小题7分),

1.求极限 解:

x?1?cosx??2xlimx?0sin3x.

xx??1?cosx??x1?cosx??2????1????1xx2?????1?cosx??22??lim???lim? lim 333x?0x?0x?0sinxxx ?lime?1?cosx?xln???2??1x?0x3?limex?0?1?lim1?cosxx?0xln2?1?cosx?xln???2?xln1?cosx1?cosxln22 ?lim32x?0xx ?lim?sinx1??.

x?0?1?cosx?2x43x2 2.设x?0时,f?x?与是等价无穷小,

2 解:

?f?t?dt与Ax03xk等价无穷小,求常数k与A.

3x 由于当x?0时,

?0f?t?dt与Axk等价无穷小,所以lim?f?t?dt0xx?0Axk?1.而

2??1x313??ftdtfx???3?32fx23?3x23?x0??lim?lim lim2kk?1x?0x?0x?0?AxAkxAkxk?13?x?2?11?1k?1,A?所以,lim.因此,.

x?06Akxk?163x??????22??331??limx?x?lim k?1k?1x?0x?0?6Akx6Akx??? 3.如果不定积分

??x?1??1?x?22x2?ax?bdx中不含有对数函数,求常数a与b应满足的条件.

解:

1 / 7

?x?1??1?x2x2?ax?b2??化为部分分式,有

x2?ax?b?x?1?2?1?x2?ABCx?D, ??22x?1?x?1?1?x因此不定积分

??x?1??1?x?22x2?ax?bdx中不含有对数函数的充分必要条件是上式中的待定系数

A?C?0.

x2?ax?b?x?1?2?1?x2?BDB?1?x2??D?x?1?. ???2222?x?1?1?x?x?1??1?x?2222所以,有x?ax?b?B1?x?D?x?1???B?D?x?2Dx??B?D?.

2??比较上式两端的系数,有1?B?D,52a?2D,b?B?D.所以,得b?1.

5.计算定积分min1,0??x?2?dx.

解: min1,??x?2x?2????1x?2?1

x?2?1x?1?1?2?x1?x?2? ??.

x?22?x?3??x?3?152所以,min1,0??x?2?dx??1dx???2?x?dx???x?2?dx?012125213. 8 5.设曲线C的极坐标方程为r?asin 解: 曲线r?asin3?33?3,求曲线C的全长.

?3一周的定义域为0?3?22?3??,即0???3?.因此曲线C的全长为

6 s???r??????r?????d???200asin?3?asin24?3cos2?33?d???asin20?3d???a. 322 / 7

二.(本题满分45分,共有5道小题,每道小题9分),

6.求出函数f?x??limn??? 解:

sin??x?2n的所有间断点,并指出这些间断点的类型.

1??2x?1??sin??x?x?2?11x??sin??x??22??fx?lim??2n n???1??2x?11.

??x??22?1?0x???2因此x1??11与x2?是函数f?x?的间断点. 22x??12x??12x??12 lim?f?x??lim?0?0,lim?f?x??lim?sin??x???1,因此x??x??121是函数f?x?的第一类可2去型间断点.

lim?f?x??lim?sin??x??1,lim?f?x??lim?0?0,因此x?x??12x??12x?12x??121是函数f?x?的第一类可去型2间断点.

7.设?是函数f?x??arcsinx在区间?0,求极限lim 解:

f?x??arcsinx在区间?0,b?上使用Lagrange(拉格朗日)中值定理中的“中值”,

?bb?0.

b?上应用Lagrange中值定理,知存在???0,b?,使得

arcsinb?arcsin0?211??2?b?0?.

?b?所以,?2?1???.因此,

arcsinb???b?1???2??2arcsinb??b2arcsinb???lim2 lim2?lim 22b?0bb?0b?0bb?arcsinb?令t?arcsinb,则有

3 / 7

2t2?sin2tt2?sin2t?lim lim2?lim2 4b?0bt?0tsin2tt?0t ?lim?22t?sin2t2?2cos2t11?cos2t12sin2t1?lim?lim?lim?

t?0t?04t312t26t?0t26t?02t3所以,lim?bb?0?1. 31?x 8.设f?x?? 解:

?e0y?2?y?dy,求?f?x?dx.

01?f?x?dx?xf?x???xf??x?dx

10001?x11在方程f?x??1?1?e0y?2?y?dy中,令x?1,得

0 f?1???e0y?2?y?dy??ey?2?y?dy?0.

0y?2?y?再在方程f?x??11?x?e0dy两端对x求导,得f??x???e111?x2,

因此,

?f?x?dx?xf?x???xf??x?dx???xf??x?dx

100001 ?xe0?1?x21dx?e?xe?x0x221?12?dx?e???e?x???e?1?.

?2?021 9.研究方程e?ax 解:

设函数f?x??axe?a?0?在区间???,???内实根的个数.

2?x?1,f??x??2axe?x?ax2e?x?ax?2?x?e?x.

令f??x??0,得函数f?x?的驻点x1?0,由于a?0,所以 limf?x??limaxex???x???x2?2.

?2?x?1????,

x22x2?1??alimx?1?alimx?1?alimx?1??1.

x???ex???ex???e4 / 7

limf?x??limaxex???x????2?x因此,得函数f?x?的性态

x ?? ???,? 0? 0 0 ?0,2? ? 2 0 4ae?2?1 ?2,??? ? ?? f??x? f?x? ?? ? ?1 ? ? ?1 e22?x ⑴ 若4ae?1?0,即a?时,函数f?x??axe?1在???,0?、?0,2?、?2,???内

4?2各有一个零点,即方程e?ax在???,x2???内有3个实根.

e22?x ⑵ 若4ae?1?0,即a?时,函数f?x??axe?1在???,0?、?0,???内各有一个零

4?2点,即方程e?ax在???,x2???内有2个实根.

e22?x ⑶ 若4ae?1?0,即a?时,函数f?x??axe?1在???,0?有一个零点,即方程

4?2ex?ax2在???,???内有1个实根.

10.设函数f?x?可导,且满足

f???x??x?f??x??1?,f?0??0.

试求函数f?x?的极值. 解:

在方程f???x??x?f??x??1?中令t??x,得f??t???t?f???t??1?,即

f??x???x?f???x??1?.

在方程组??f??x??xf???x??x中消去f???x?,得

??xf??x??f???x???xx?x2f??x??.

1?x2t?t2dt.即 积分,注意f?0??0,得f?x??f?0???21?t0x5 / 7

大学高数期末考试题及答案

第一学期高等数学期末考试试卷答案一.计算题(本题满分35分,共有5道小题,每道小题7分),1.求极限解:x?1?cosx??2xlimx?0sin3x.xx??1?cosx??x1?cosx??2????1????1xx2?????1?cosx??22??lim???lim?lim333x?0x?0x?
推荐度:
点击下载文档文档为doc格式
0zdz878z4j4n25q6ny0j2r4yi9c8hj003rt
领取福利

微信扫码领取福利

微信扫码分享