好文档 - 专业文书写作范文服务资料分享网站

数学分析简明教程答案

天下 分享 时间: 加入收藏 我要投稿 点赞

第十一章 广义积分

§11.1 无穷限广义积分

1. 求下列无穷积分的值: (1)

????2??1dx; x2?11dx;

x(1?x2)xe?axdx(a?0);

2(2)

2(3)(4). (5)

???0????0e?axsinbxdx(a?0);

??0xdx; 1?x2dx(x2?p)?(x2?q)(p,q?0).

(6)

???0解 (1)

???2A111A?111dx?limdx?lim(ln?ln)?ln3. 22?2A???A???2A?132x?1x?1(2)

????1??A111A21dx?limdx?lim(ln?ln2)?ln2. 222?1A???A???22x(1?x)x(1?x)1?A(3)

0xe?ax2dx?limA???0?Axe?axdx?lim2211. (1?e?ax)?A???2a2a(4)设I??e?axsinbxdx (a?0),则

0??1bAAAI?lim?0e?axsinbxdx?lim(?e?axsinbx0??e?axcosbxdx)

A???A???aa0AbA?ax ??2lim(ecosbx0?b?e?axsinbxdx)

0aA???Abb2bb2?ax ?2?2lim?esinbxdx?2?2aaA???0aa???0e?axbb2sinbxdx?2?2I,

aa所以 ,I?b. 22a?b(5)作变换x?y,则有

22y(1?2y?y2)?y(1?2y?y2)x2y22dx?dy?dy ??1?x2?1?y422(1?2y?y)(1?2y?y)222d(1?2y?y)1d(y) ??24?1?2y?y22?12?(y?)2222d(1?2y?y)1dy ?)?2??24211?2y?y2?(y?)22221?2y?y2?ln?[arctan(2y?1)?arctan(2y?1)]?C 41?2y?y22y?x所以,

22(1?2x?x)2ln?[arctan(2x?1)?arctan(2x?1)]?C, 41?x22?A0x2(1?2A?A)2dx?ln?[arctan(2A?1)?arctan(2A?1)]

421?x21?A2?2??2(?)??2222(A???),

2即,

???0x2dx??. 221?xdx?(a2?x2)n的地推公式,

(6) 由于当p?q时,用In?dxdx1x1dx????(x2?p)(x2?q)?(x2?p)22px2?p2px2?p

?1x1x?arctan?C

2px2?p2ppp所以,p?q?0时,

A???0lim?Adx1A1A?, ?lim(?arctan)?222A???2p(x?p)A?p2ppp4pp当p?q时,由于

dx1(p?q)dx111??(??(x2?p)(x2?q)p?q?(x2?p)(x2?q)p?q?x2?qx2?p)dx

?所以,当p?q时,

11x1x(arctan?arctan)?C, p?qqqpp???0Adxdx?lim 222?0A???(x?p)(x?q)(x?q)?limA???11A1A? (arctan?arctan)?p?qqqpp2pq(p?q)两种情况下,即只要p,q?0,就有

????3??0dx?. ?22(x?p)(x?q)2pq(p?q)2. 讨论下列积分的收敛性: (1)

dxx?140;

(2)

?????0arctanxdx;

1?x3sin1x2(3)

+?1dx;

(4)

??01dx;

1?xsinx(5)

?????0??xdx; 221?xsinxxmdx(n,m?0); n1?xx2dx ;

x4?x2?1(6)

0(7)

??0(8)

????31x1?x21dx;

(9)

??0x2e?xdx(p?0);

(10)

????1??lnxdx; xplnnxdx (n是正整数); x2sin2xdx; x(11)

1(12)

???0cosax?01?xndx; ??11(14)?[ln(1?)?]dx;

1x1?x??11(15)?ln(cos?sin)dx;

1xx(13)

??(16)

???01?sin2ln?2?1?2x?433x???dx. ??1解 (1)limxx???21x?14?1,所以积分???3dxx?140收敛.

xarctanx??,故所求积分收敛.

x???21?x31sin212x?1,因此所求积分收敛. (3)limxsin2?limx???x???1xx2(2)limx(4)?x?0,有

11??0,且

1?xsinxx?1Adxdx?lim??limln(1?A)???,

0A???1?x1?xA????即

??0???0??dxdx发散,由比较判别法知?发散.

01?xsinx1?x???0xxx,而??0limx?1,无穷积分

x???1?x21?x2sin2xx2?1??xxdxdx发散. 发散,由比较判别法知222?0x?11?xsinx(5)?x?0,有

xn?1,所以, (6)因为limx???1?xn当n?m?1,即n?m?1时,

???0xmdx收敛;当n?m?1,即n?m?1时,1?xn???0xmdx发散. n1?xx2?1 (7)limx4,所以积分收敛.

x???x?x2?12(8)limxx???5331x1?x2?lim13x???1?1x2?1,所以积分收敛.

x2?p(2?p)x1?p?lim?? (9) 因为limx(xe)?limxx???x???exx???e2p?x(p?2)(p?1)?(p?[p])xp?[p]?0, ?limxx???e所以无穷积分收敛.

(10) 若p?1,则可以选取?0?0,使得p??0?1,由于

x???limxp??0lnxxp?limlnx?0,

X???x?0所以

???1lnxdx收敛; px??1??lnxlnx1,而发散,由比较判别法,?dxdxpppp??11xxxx若p?1,则当x?e时,发散.

从而,

???1lnx?收敛,p?1时,dx? px?发散,p?1时.(11)由于

lnnxlnnxlnn?1x1limx?lim?lim2n???lim2n?2(n?1)?2?0, 2111x???x???x???x???xx2x2x2所以无穷积分

32???1lnnxdx收敛. x2sin2x1?cos2x1cos2x???(12) 因为,而 x2x2x2x?A0cos2xdx?11(sin2A?sin0)?, 22

数学分析简明教程答案

第十一章广义积分§11.1无穷限广义积分1.求下列无穷积分的值:(1)????2??1dx;x2?11dx;x(1?x2)xe?axdx(a?0);2(2)2(3)(4).(5)???0????0e?axsinbxdx(a?0);<
推荐度:
点击下载文档文档为doc格式
0z88c1v6pn9vfqx3d4pq7px008twst015gu
领取福利

微信扫码领取福利

微信扫码分享