……………………………………………………………最新资料推荐…………………………………………………
修水渠问题答案:
18 人修12 天水渠共:18×12 = 216个劳动日,故总工程量为216× 2 = 432个劳动日,还剩216 个劳动日,现需30 ?12 ? 9 = 9(天)完成,故需216 ÷ 9 = 24(人),所以还需补6 人 AB间距答案:
第一次相遇意味着两车行了一个A 、B 两地间距离,第二次相遇意味着两车共行了三个A 、B 两地间的距离.当甲、乙两车共行了一个A 、B 两地间的距离时,甲车行了95 千米,当它们共行三个A、B两地间的距离时,甲车就行了3 个95 千米,即95×3 = 285(千米),而这285 千米比一个A、B两地间的距离多25 千米,可得:95×3 ? 25 = 285 ? 25 = 260 (千米)
阴影部分面积答案:
用A 表示两个正方形重合部分的面积,用B 表示除重合部分外大正方形的面积,用 C表示除重合部分外小正方形的面积.据题意,要求(B-C)是多少平方厘米,即求(B+A)-(C-A) 的面积,(B+A) = 6×6=36 (平方厘米), (C+A)=3×3=9(平方厘米),因此 36-9=27 (平方厘米)就是所求的两块没有重合的阴影部分面积差.
4个舞蹈节目排在一起,现将4个舞蹈节目排序,有
种方法,再将这4个舞蹈节目
种方法,
捆绑在一起,视为1个节目,加上6个演唱节目那么就变成7个节目混排,有所以共有
种排列顺序。
有甲、乙第n次相遇时,甲、乙共游了30×(2n-1)米的路程; 于是,有30×(2n-1)<5×60×(1+0.6)=480,(2n-1)<16,n可取1,2,3,4,5,6,7,8;有30×(2m-1)<5×60×(1-0.6)=120,(2m-1)<4,m可取1,2;于是,甲、乙共相遇8+2=10次。
巧算公式答案:(高等难度)
解法1、全程的平均速度是每分钟(80+70)/2=75米,走完全程的时间是6000/75=80分钟,走前一半路程速度一定是80米,时间是3000/80=37.5分钟,后一半路程时间是
21
……………………………………………………………最新资料推荐…………………………………………………
80-37.5=42.5分钟
解法2:设走一半路程时间是x分钟,则80*x+70*x=6*1000,解方程得:x=40分钟因为80*40=3200米,大于一半路程3000米,所以走前一半路程速度都是80米,时间是3000/80=37.5分钟,后一半路程时间是40+(40-37.5)=42.5分钟 答:他走后一半路程用了42.5分钟。
分析:从两个极端来考虑这个问题: 最大为9999-1078=8921,最小为9921-1000=8921, 所以共有9999-9921+1=79个,或1078-1000+1=79个 三角面积答案:
【答案】将正方形分成4个边长为0.5的小正方形,则四个抽屉,9个点,必有一个抽屉里有3个点,则这3个点构成的三角形面积肯定不大于正方形面积的一半,即面积不大于1/8 。 画圆答
【答案】6 画一个圆可以将平面分成两部分,画第二个圆时与第一个圆最多有2个交点,新产生2条线段,平面数量多2,2+2=4,被分成4部分,画第三个圆时,与前两个圆最多产生4个交点,新产生4条线段,平面数量增加4,2+2+4=8,平面被分成8部分;画第六个圆时,平面被分成2+2+4+6+8+10=32部分,这个时候再画一条线段,与前6个圆最多产生12个交点,平面数量增加12,32+12=44,平面被分成44部分。 巧算答案:
【答案】10 五位数答案: 35424
提示:a是偶数。
这样的最小五位数是43020. 【分析】 42972。 树间距答案:
解答:由于甲速是乙速的2倍,所以乙在拐了第一弯时,甲正好拐了两个弯,即两个人开始同时沿着最上边走。
乙走过了5棵树,也就是走过了5个间隔,所以甲走过了10个间隔,四周一共有(5+10)×4=60个间隔,根据植树问题,一共栽了60棵树。
因为组成的三位数能同时被2,5整除,所以个位数字为0。根据三位数能被3整除的特征,数字和2+7+0与5+7+0都能被3整除,因此所求的这些数为270,570,720,750。 铅笔答案:
【分析】 由于三个人的铅笔三次翻倍后数量相同,我们可以设三人最后都有8份铅笔,利用倒推法如下表: 小雪 刘星 小雨
22
……………………………………………………………最新资料推荐…………………………………………………
刘星给小雨、小雪后 8 8 8 刘星给小雨、小雪前 4 16 4 小雨给刘星、小雪前 2 8 14
三人原来(小雪给刘星、小雨前) 13 4 7
由表格看出小雪少了13-8=5份铅笔恰好对应10支,所以1份是2支,所以小雪原来有铅笔数量13×2=26支,刘星原来有4×2=8支,小雨原来有7×2=14支 直接用标数法,即可.
观察发现,从A点出发的三个面左面、下面、前面所标数相等,则上面的中间填6,进而中间右填18.类似的,即可得到到达B段的方法总共有:18×3=54.
阴影面积答案:
【分析】 试除法200399÷99=2024 23,所以最后两位是99-23=76。 计算答案:
解答:(1)这100个数中,除以3余1的有34个,余2的有33个,余0的有33个;分析可知,
如果满足要求必须全部选自余0的那一组。所以有33个。
(2)这100个数中,除以3余1的有34个,余2的有33个,余0的有33个;分析可知,如果满足要求不能同时选择余1的和余2的,而余1的多,所以选择余1的一组,此外还可以在余0的那一组选择,但是只能选择一个。所以最多选择34+1=35个。
23
……………………………………………………………最新资料推荐…………………………………………………
货物的重量答案:
解答:两位顾客购买的货物的重量一定是3的倍数,从余数考虑会简单些,余数分别是:0、1、0、1、2、1, 余数和是5,而只能剩下一个就要是3的倍数,所以只能剩下余2的货物。所以最后剩下的是20千克的货物。 骑车路程答案:
解答:这天小明上学所用的时间比原来少10-(5-1)=6分钟。根据条件可知,令原来的速度为2倍,提速后的速度为3倍。因为路程不变,而速度×时间=路程,因此原来的时间为3倍,提速后的时间为2倍,前后差6分钟,原来所用的时间为6÷(3-2)×3=18分钟=0.3小时。原来的速度为每小时6÷0.3=20千米。
分苹果答案:
先给每人2个,还有14个苹果,每人至少分一个,13个空插2个板,有字推理答案:
若要让差最小,那么,让两数的千位只差1.;大数除去千位后的三位数要尽量小,小数除去千位后的三位数要尽量大。
1、2、3、4、6、7、8、9这8个数,能组成的最大三位数为987,最小三位数为123。但这样的话,剩下的4、6差为2,显然不能得到最小差。那么令千位为3、4,这样,剩余的数字组成的最大数为987,最小数为126。最小差为: 4126-3987=139。
种分法.数
24
……………………………………………………………最新资料推荐…………………………………………………
本题是一道逻辑推理要求较高的试题.首先应该确定比赛是在甲乙、乙丙、甲丙之间进行的.那么可以根据题目中三人打的总局数求出甲乙、乙丙、甲丙之间的比赛进行的局数 ⑴丙当了5局裁判,则甲乙进行了5局;
⑵甲一共打了15局,则甲丙之间进行了15-5=10局; ⑶乙一共打了21局,则乙丙之间进行了21-5=16局; 所以一共打的比赛是5+10+6=31局.
此时根据已知条件无法求得第三局的裁判.但是,由于每局都有胜负,所以任意连续两局之间不可能是同样的对手搭配,就是说不可能出现上一局是甲乙,接下来的一局还是甲乙的情况,必然被别的对阵隔开.而总共31局比赛中,乙丙就进行了16局,剩下的甲乙、甲丙共进行了15局,所以类似于植树问题,一定是开始和结尾的两局都是乙丙,中间被甲乙、甲丙隔开.所以可以知道第奇数局(第1、3、5、……局)的比赛是在乙丙之间进行的.那么,第三局的裁判应该是甲.
逻辑问题通常直接采用正确的推理,逐一分析,讨论所有可能出现的情况,舍弃不合理的情形,最后得到问题的解答.这里以小明所得奖牌进行分析。
解:①若\小明得金牌\时,小华一定\不得金牌\,这与\王老师只猜对了一个\相矛盾,不合题意。
②若小明得银牌时,再以小华得奖情况分别讨论.如果小华得金牌,小强得铜牌,那么王老师没有猜对一个,不合题意;如果小华得铜牌,小强得金牌,那么王老师猜对了两个,也不合题意.
③若小明得铜牌时,仍以小华得奖情况分别讨论.如果小华得金牌,小强得银牌,那么
25