2020-2021学年高一数学人教B版必修5单元测试AB卷
第二章 数列 B卷
一、选择题
1.已知数列?an?,a1?2,an?1?1? A.-2
2.数列1,1,2,3,x,8,13,21,…中的x的值是( )
A.4 B.5 C.6 D.7
3.已知?an?中,a1?1,nan?1??n?1?an , 则数列?an?的通项公式是( )
1n?1A. an? B. an?2n?1 C. an?n D. an?
2nn
4.等差数列?an?中,a3?3,a5?7,则a7?( ) A.5 B.9 C.11
5.已知数列?an?满足an?1?an?2,且a1?2, 则a5?( ) A.8
6.已知?an?为等差数列,若a3?a4?a8?9,则S9? ( )
A.24
7.在等比数列{an}中,a1?1,a4?27,则2a3?a5?( )
A.45 8.设 A.6
9.设等比数列?an?满足a1?a2??1,a1?a3??3,则a4?( )
B.16
C.32
D. 64
B.54
C.99
D.81
B.27
C.36
D.54
B. 9
C.10
D. 11 D.13
B.2
C.-1
D.1
1,则a1a2ana99?( )
?an?是等比数列,若a1?a2?a3?1, a2?a3?a4? 2,则 a6?a7?a8?( )
A. ?8
B. 8 C. 16
D. ?6
10.已知等比数列?an?的前n项和为Sn,若S2?2,S3??6,则S5?( )
A.18
二、填空题
B.10
C.?14
D.?22
12a?,a5?9,则T5?______. 11.已知数列?an?的前n项积为Tn,an?0,an,?aa2?1nn?23
a12.已知数列?n?满足
a1?1,11??11?an?11?an,则a10=__________.
13.已知两个等差数列?an?和?bn?的前n项和分别为An和Bn,且a2?a5?a8?__________.
b3?b7An3n?1?,则Bnn+1
14.若?an?是等比数列,且公比q?4,a1?a2?a3?21,则an?__________.
三、解答题
315.已知数列?an?满足a1?2,an?1?2? (n为正整数),求数列的通项an.
an
参考答案
1.答案:C
解析:因为a1?2,an?1?1?以a1a23311,a2?,a3??1,a4?2,an2.故数列?an?周期为3,且a1a2a3??1,所
a99??a1a2a3???1.故选C.
2.答案:B
解析:采用归纳猜想寻找规律,1+1=2,1+2=3,…,8+13=21,所以2?3?x,所以x?5.故选B 3.答案:C
an?1n?1?,又∵a1?1, 解析:由nan?1??n?1?an,可得:annana3an23na??????a????????1?n. ∴n1a1a2an?112n?1∴an?n,
故选:C.
4.答案:C
解析:等差数列?an?中,a3?3,a5?7,则a7?2a5?a3?14?3?11 5.答案:C
解析:∵an?1?an?2,且a1?2,∴数列?an?是等差数列,公差为2,首项为2. 那么a5?2?2??5?1??10. 故选:C. 6.答案:B
解析:根据等差数列的通项公式,我们根据a3?a4?a8?9,易求也a5?3,由等差数列的前 n 项和公9式,我们易得S9? ?a1?a9?,结合等差数列的性质“当2q?m?n时,2aq=am+an”,得?a1?a9?2a5?,即可
2得到答案.
解:设等差数列?an?的公差为 d ,a3?a4?a8?9??a1?2d???a1?3d???a1?7d??9 即3?a1?4d??9?a1?4d?3 即a5?3 又S9?a5?27
9?a1?a9??9 27.答案:C
解析:设数列?an?的公比为q,因为a4?a1q3,所以q?3,所以2a3?a5?2q2?q4?99. 8.答案:C
解析:b2?a2?a3?a4??a1?a2?a3?q?2,所以公比为2,则b6?a6?a7?a8 ??a1?a2?a3?q5=1?25?32,故选C.
9.答案:A 解析:
?an?为等比数列,设公比为
q.
?a1?a2??1??a1?a1q??1①,即?, ?2a?a??3a?aq??3②??13?11显然q?1,a1?0,
②得1?q?3,即q??2,代入①式可得a1?1, ①?a4?a1q3?1???2???8.
310.答案:D