好文档 - 专业文书写作范文服务资料分享网站

小学奥数数论知识点总结

天下 分享 时间: 加入收藏 我要投稿 点赞

小学奥数数论知识点总结

1.奇偶性问题 奇+奇=偶奇×奇=奇 奇+偶=奇奇×偶=偶 偶+偶=偶偶×偶=偶 2.位值原则

形如:abc=100a+10b+c 3.数的整除特征: 整除数特征

2末尾是0、2、4、6、8 3各数位上数字的和是3的倍数 5末尾是0或5

9各数位上数字的和是9的倍数

11奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数 4和25末两位数是4(或25)的倍数 8和125末三位数是8(或125)的倍数

7、11、13末三位数与前几位数的差是7(或11或13)的倍数 4.整除性质

①如果c|a、c|b,那么c|(ab)。 ②如果bc|a,那么b|a,c|a。

③如果b|a,c|a,且(b,c)=1,那么bc|a。④如果c|b,b|a,那么c|a.

1 / 3

⑤a个连续自然数中必恰有一个数能被a整除。 5.带余除法

一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r

当r=0时,我们称a能被b整除。

当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商)。用带余数除式又可以表示为a÷b=q……r,0≤r

6.唯一分解定理

任何一个大于1的自然数n都可以写成质数的连乘积,即n=p1×p2×...×pk 7.约数个数与约数和定理

设自然数n的质因子分解式如n=p1×p2×...×pk那么:n的约数个数:d(n)=(a1+1)(a2+1)....(ak+1)

n的所有约数和:(1+P1+P1+…p1)(1+P2+P2+…p2)… (1+Pk+Pk+…pk) 8.同余定理

①同余定义:若两个整数a,b被自然数m除有相同的余数,那么称a,b对于模m同余,用式子表示为a≡b(modm)

②若两个数a,b除以同一个数c得到的余数相同,则a,b的差一定能被c整除。③两数的和除以m的余数等于这两个数分别除以m的余数和。

④两数的差除以m的余数等于这两个数分别除以m的余数差。 ⑤两数的积除以m的余数等于这两个数分别除以m的余数积。 9.完全平方数性质

①平方差:A-B=(A+B)(A-B),其中我们还得注意A+B,A-B同奇偶性。

2 / 3

②约数:约数个数为奇数个的是完全平方数。 约数个数为3的是质数的平方。

③质因数分解:把数字分解,使他满足积是平方数。 ④平方和。

10.孙子定理(中国剩余定理) 11.辗转相除法

12.数论解题的常用方法:

枚举、归纳、反证、构造、配对、估计

3 / 3

小学奥数数论知识点总结

小学奥数数论知识点总结1.奇偶性问题奇+奇=偶奇×奇=奇奇+偶=奇奇×偶=偶偶+偶=偶偶×偶=偶2.位值原则形如:abc=100a+10b+c3.数的整除特征:整除数特征2末尾是0、2、4、6、83各数位上数字的和是3的倍数5末尾是0或59各数位上数字的和是9的倍数11奇数位上数字
推荐度:
点击下载文档文档为doc格式
0xil340sn04ddq3430jm4g4gh0kze500ye5
领取福利

微信扫码领取福利

微信扫码分享